.com Solutions Inc.

P
LiveCode Conversion
Procedure

LiveCode Conversion Procedure

1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

Licensing FmPro Migrator

LiveCode Conversion Procedure

Importing FileMaker Database Info

Importing Microsoft Access Database Info

Importing Visual FoxPro Applications

Adding the Button Bar Widget

Converting to a LiveCode Stack

Customizing the LiveCode Stack Conversion Process

FmPro Custom Property Set

1.10 FileMaker Converted Script Steps

Post Conversion Development

2.1

Overview of Post Conversion Development - LiveCode Conversion

Conversion Process Output Files

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Overview of Conversion Files
Application.livecode

Corrupted Images Report.ixt
Duplicate Objects Report.xs
Missing Tables Report.xis
create_relationships.sql

Missing Relationships Report.xls
Relationships.JSON

SQLColumnTypes.JSON

15
18
19
20
25
34
37
41

44

48
49
50
52
53
54
55
56
58

Library SubStacks

4.1
42
4.3
4.4
45
4.6
4.7
4.8
4.9

Overview of Library SubStacks
fmFunctions_Library
Globals_Library
Images_Library

SQL_Library
Unstored_Calc_Library
Stored_Calc_Library
Validation_Library

Value_List Library

Conversion Utilities

5.1
5.2
5.3

54

JSON Connection File Builder.livecode Utility
FM Functions to LiveCode Remapping.livecode Ultility
Relationships JSON Editor

SQL Column Types JSON Editor

Using the Converted Application

6.1
6.2
6.3

Export Records
Import Records

Printing

61
63
64
67
68
69
70
71

72

74
78
86
99

113
116
118

LiveCode Conversion Procedure - 4

Licensing FmPro Migrator

As of FmPro Migrator v11, all FmPro Migrator downloads are fully functional with features
unlocked via a single license key.

This section of the manual shows how to enter the license keyto unlock the features within
FmPro Migrator.

FmPro Migrator 11.01
4/14/2024

Demo Edition Dialog

Thanks for using FmPro Migrator Demo
Edition.
This demo is fully functional for up to
5 database fields.

Ordering a license removes this restriction.

oK

When launched the first time, FmPro Migrator will be running in Demo mode as shown in this
screenshot. Clicking the Ok button opens the order page of the website.

In addition to transferring data for 5 database fields, the conversion features shown on the GUI
tab of the Migration Process window will convert 5 layouts or forms/reports & scripts.

LiveCode Conversion Procedure - 5

Demo Mode - About Tab

[WON) FmPro Migrator

Aelelli FileMaker

License

.com Solutions Inc. Chat now

Clicking the "License" button on the About tab, or selecting the Help -> License/About menu items
will open the About window where you can enter the license key.

LiveCode Conversion Procedure - 6

About/License Window

() About FmPro Migrator

-

FmPro Migrator 11.01 Demo (64bit) 0

Copyright © 2003-2024 .com
Solutions Inc.
www.FmProMigrator.com

ueense: pemo () i ©)

Email: @
©

Email Suppon Visit Website @ Check for Update

On the About FmPro Migrator window:

(1) Product name and version licensed, (2) Demo or Licensed will be displayed, (3) The Upgrade
button opens the website order page, (4) Email address associated with your license key, (5)
Clipboard button reads the license key from the clipboard, (6) License keyfield, (7) Email Support
button opens the Contact form on the website, (8) Visit Website opens the order page in Demo
mode or the product page in Licensed mode, (9) Check for Update opens the downloads page
with the latest software version, (10) Ok button closes the About window.

LiveCode Conversion Procedure - 7

Pasting License Key

() About FmPro Migrator

FmPro Migrator 11.01 Al Accelerated Platinum Edition

(64bit) @

Copyright © 2003-2024 .com
Solutions Inc.
www.FmProMigrator.com

License: Licensed

License Valid Until: 4/19/2024 @

Email: test@dotcomsolutionsinc.net @
Email Support Visit Website Check for Update

Your product license key will be displayed in your web browser when your order has been
completed. It will also will be sent via email atthe same time, please check your SPAM folder if
the email doesn'tarrive in a few minutes.

(1) Copythe license key to the clipboard and click the clipboard icon. Once validated (2) the
product name will change, (3) the License validation date will be updated, (4) your email address
will be displayed, and (5) the license key will be displayed in the field under the Email address
when clicking inside the field. In this screenshot the license key has been obscured.

And thatis all you need to do to license all of the features of FmPro Migrator.

LiveCode Conversion Procedure - 8

LiveCode Conversion Procedure

This document explains the process of converting FileMaker Pro®, Microsoft Access and Visual
FoxPro databases into LiveCode (www.LiveCode.com) stacks with FmPro Migrator Platinum
Edition. FmPro Migrator Platinum Edition converts each layout/form/reportinto a LiveCode card,
containing all of the fields, portals, text,images and buttons from the original layout.

FmPro Migrator Platinum Edition generates a functional database application within a few
seconds, including hundreds of lines of LiveCode code within each card of the generated stack
file. Individual objects including Tab Panels, radio button groups, checkbox button groups and
Data Grid objects also include the LiveCode code required for an easyto use database front-end
application.

This feature leverages the automated layout and relationship importing features of FmPro
Migrator Platinum Edition, while using FileMaker Pro Advanced, the LiveCode IDE along with the
SQL database you choose to use to store the data for your application.

LiveCode stack files generated by FmPro Migrator Platinum Edition incorporate the following
commonly used database application features:

Display Records - When the stack is opened and a connection is made to the converted SQL
database, the records associated with the converted Layout/Form are displayed in a form viewing
mode. The fields, text labels, embedded graphics and images are displayed in the same manner
as the original database file. Record navigation is implemented using 4 controls:

Next Button, Previous Button, Scrollbar and Record Number field entry. SQL database BLOB
column fields containing images are automatically displayed.

Related records are automatically displayed within individual fields and portals/subforms are
converted into LiveCode Data Grids. The related records displayed within Data Grids are
automatically updated when advancing to another record in the parent table.

Update Records - Clicking into any field provides the user with the ability to update the contents of
the field. Date fields are configured with a Date Picker control. Custom Value Lists from the
original database are displayed as drop down menus, pop-up menus, radio button group or
checkbox group depending upon the original field definition.

Related records displayed within Data Grids can be updated just as easily as records in the main
form.

Insert Records - Individual records can be inserted as a new record in either Browse or Find
operating modes. Clicking the Insert Portal Row button to the top right of any Data Grid object will
add a new record to the related database table. As with the original database implementation, the
primary key for the parent table will be automatically inserted into the foreign key column of the
related record.

Delete Records - Individual records can be deleted in either Browse or Find modes. If a Delete

LiveCode Conversion Procedure - 9

http://www.LiveCode.com

Row button orimage object was embedded in the original FileMaker Portal, then this same
functionality will also be implemented to delete the selected Data Grid row.

Query Records - Query by example record searching is automaticallyimplemented for each card
in the stack file. Once a set of records has been found as a result of the query, the navigation
buttons can be used to navigate thru the found set of records. Individual records can be inserted
or deleted in found set mode as well as within the standard Browse mode.

This documentincludes information for the built-in library sub stacks:

fmFunctions_Library - This library duplicates the functionality of 129 of the most commonly used
FileMaker built-in functions. Atool is provided to remap the original FileMaker functions to these
LiveCode versions within the converted FileMaker scripts.

Globals_Library - The gGlobals array within the _gGlobalsInitialize handler includes FM
tables/fields which are used as global variables. These globals are initialized during app startup
and can be updated anytime by the application, just like FileMaker globals.

Images_Library - This library provides a place where commonlyused images can be centrally
stored within the new application stack.

SQL Library - The SQL_Library provides database independent code to connect to your SQL
database, insert, query, update, delete records, and load relationships from a JSON file.

Stored_Calc_Library - Stored field calculations are defined in this library for each table of the
database from the original FileMaker database definition. Code which is too complex for
automatic conversion is commented to prevent errors. This code runs during record update/insert
database tasks.

Unstored Calc_Library - Stored field calculations are defined in this library for each table of the
database from the original FileMaker database definition. Code which is too complex for
automatic conversion is commented to prevent errors. This code runs as records are read from
the database by the refreshFields handler on each card. By default, itis commented to improve
performance, because these calcs do not necessarily need to run for every converted layout. The
developer needs to decide whether it should run, then enable this code as needed.

Validation Library - Field validation code during database insert/update tasks is defined for each
database table inside this library.

Value List Library - Custom and field based value lists are defined within this library. Changes
made here are reflected throughout the entire application. Value lists from Microsoft Access and
Visual FoxPro are also defined inside this library.

Note: The LiveCode Communityicon is displayed in FmPro Migrator for the LiveCode conversion

LiveCode Conversion Procedure - 10

feature. This feature is compatible with LiveCode Community and LiveCode Commercial, even
though the LiveCode Community Edition is no longer being updated. Pricing for the LiveCode
Commercial versions has been made significantly more affordable. For details, please see the
LiveCode.com website.

Document Version 12

FmPro Migrator11.01

4/15/2024

[Added new Licensing FmPro Migrator info, updated some of the screenshots.]

Original FileMaker Pro Layout

0006 Asset_Management2
Layout i O
DQEN é
Layout: S
Form
: <<Item>>
D
Item
o—
Layout: Category.
1
Madel
Total:)
12 Serial. Numher1] Picture
AN 2
mj{ej{e]} 2
EAEI N
S5 ew Information
Field %)
Part |
Q@
L el Rate.Purchase. Rate.Placed......
r L FF S Purchased.From. |
VB[S
613 S— | A
v
100 A= Layout [) <>

FmPro Migrator reads the XML definition of a FileMaker layout, and then converts this information
into a LiveCode card containing all of the fields, portals, text, images and buttons from the original
layout. An original layout for the sample Asset Management database is shown in the previous
image.

Note: Microsoft Access and Visual FoxPro projects are also converted into the XML definition of a
FileMaker layout, when the project metadata is imported into FmPro Migrator.

LiveCode Conversion Procedure - 11

http://www.LiveCode.com

Converted LiveCode Card

O @ Application
Records:
MK < > M &8 O @ Q 1 ;o
First Previous Next Last Show All Add Delete Find
Form: Assets v13 B

First) Previous Next) (Last

@

*, % . § B B ™ O
Item Category
jpbc
Telephones v
phone0l 1111111111

1341343 1341343_2 1341343_3

Notes

quired Date Purchased

2007-12-11 E 2007-12-11
3.0
Radlo Btn Vert Checkbox Vert
Office Furnitu £ Office Furnitul
Computers Computers
Telephones Telephones
) _ Table Table
[Button1] ’ Show Dialog1 ’ Chair Chair
\ J Router Router
Book Value Radlo Btn 2 Column
RadioBinHoriz Otfica Furnitui Computers Telephones - Office Furnitur - Computers

CheckboxHoniz. ' Office Furnitul@ Computerd Telephones -

The resulting LiveCode card is shown in this screenshot. Each field is filled with the name of the
original Tablename::Fieldname information from the original FileMaker Pro Layout.

Te

LiveCode Conversion Procedure - 12

AStatus Area background object is provided at the left hand side of the card, to simulate the
Browse/Find modes from the original database. Menus and scripts are provided in the template
stack file for hiding/showing the status area and moving the card objects to accommodate the
Status Area.

Each original layout name is used as the name for the LiveCode card, and when the Layout drop
down menu is selected, a "go to card" instruction is executed, taking the user to the selected card.

The card objects are placed into a Geometry Manager enabled group named

"Layout Objects_Group". As the card is resized, the Layout Objects _Group is also resized. If the
window is too small to show all of the objects, scrollbars automatically appear to enable scrolling
by the user.

Converted FileMaker Script Code

on New Call Log Record
[re] d and -t
- ipt w - 1 f P
- David Simps - fmg] om - I
I rd/Request
eld | le] D]
[t/pert |
end New Call Log Record
on New Call Log Window
cript opens a new Call Log window.
06 - David Simpson - .com Solutions Inc. - www.fmpromigrator.com - Initial Release
low [Name: Call Log ; Height: 300; wWidth: 700; Top: 50; Left: 50
go to card "Client Call Log
unlock screer
end New Call Log Window

If FileMaker scripts have been copied into FmPro Migrator Platinum Edition via the ClipBoard, then
these scripts will be converted into LiveCode handlers. The 34 most commonly used (out of 140)
ScriptMaker steps are converted directly into LiveCode code. FileMaker script commands such as
Go to Layout are converted into the LiveCode "go to card" command, the Freeze Window/Refresh
Window commands are converted into "lock screen/unlock screen" commands. FileMaker script
commands which fill variables and fields are converted into the LiveCode "put" command.

All of these converted scripts will require additional development after the conversion process has
been completed by FmPro Migrator Platinum Edition, as these conversions are primarily intended
to reduce the amount of typing required by the LiveCode developer.

After the scripts have been created during the automated conversion process, post processing is

LiveCode Conversion Procedure - 13

done on the scripts using the included EM Functions to LiveCode Mapping.livecode stack. More
details on the post processing tasks is described in the Post Conversion Steps part of this
manual.

LiveCode Conversion Procedure - 14

Importing FileMaker Database Info

This document explains the process of converting FileMaker Pro, Microsoft Access or Visual
FoxPro projects into LiveCode projects.

FileMaker Pro 11 Notes

Issue #1: Unescaped Unicode Characters

Note: There is a documented issue with FileMaker Pro/Advanced 11 database DDR XML file
exporting which can cause problems during the conversion process. FileMaker 11 puts
unescaped high ASCIl and Unicode characters onto the clipboard and into the DDR XML file.
These errors can preventthe conversion process from working properly, as a valid XML file needs
to be read for processing purposes. The copying of info to and from the clipboard mayalso be
affected by this issue.

Workaround #1: If this problem affects the database file you are processing, consider switching to
FileMaker Pro Advanced 10 for the exporting process.

Workaround #2: If your database also contains FileMaker 11 charts, then consider manually
copying only those layouts containing charts into FmPro Migrator via the clipboard.

When switching between different versions of FileMaker for layoutimporting, select the correct
version of FileMaker from the source database menu on the FileMaker tab of the FmPro Migrator
main window. FmPro Migrator does handle mixed layout versions without difficulty, as the format
version of each layout is checked during the processing, and version differences are handled
automatically.

Issue #2: Transferring Container Field Images

FileMaker 11 introduces a new and greatlyimproved ODBC driver. However FileMaker 11 no
longer supports the use of "SELECT * FROM TableName" SQL command in order to retrieve
container field data. All previous versions of FileMaker supported the export of the JPEG preview
version of the container field contents. FmPro Migrator provides a container field export feature
which exports the requested data type into a file onto the disk. But this process only works
correctlyif all records contain the exact same type of data for exporting, for the selected field.

Workaround #1: Switching back to FileMaker 10 for container field data transfers to SQL database
servers, is probably the easiest solution to this limitation. But be aware that the older ODBC
drivers (FileMaker 7, 8, 9, 10) may exhibit a bug which can lose records when transferring data.
Please double-check the count of records which were transferred to make sure that this problem
has not occurred.

Issue #3: Portal Fields

LiveCode Conversion Procedure - 15

Itis more challenging to properly associate FileMaker portal fields with the portal where they are
actuallyused. FmPro Migrator may assign portal fields to the wrong portal.

Workaround #1:
If this happens, you can manually change the DataGrid Row Template assignment within the
LiveCode IDE.

Workaround #2:

FileMaker 12+ databases using the .fmp12 file format store this information in a more easily
readable format. If you can upgrade a file into the .fmp12 file format, it will be possible to use the
Image Exportto SQL Databases feature.

FileMaker Pro 12+ Notes

Advantage #1:

FileMaker 12+ database files store information about Portals in a more easily readable format
within the XML definition of the layout. Using a FileMaker 12+ version file can make the
assignment of fields more accurate during the conversion process. Otherwise, itis possible that
FmPro Migrator could assign fields to the wrong DataGrid within the converted stack file. This is
one advantage to converting a file from the .fp7 to the the new FileMaker .fmp12 file format.

Pre-Migration Tasks - LiveCode Conversion

Prior to importing FileMaker, Access or Visual FoxPro database applications into FmPro Migrator,
review the database schema and make appropriate changes:

1) The each database table must have a primary key column.

2) FmPro Migrator looks for columns having the Unique and Not Empty validation properties in
order to automatically determine which column should be created as a Primary Key column in the
SQL database. The PK column attributes can be changed after importing by double-clicking the
column name displayed in the Fields List on the Tables tab of the Migration Process window.

3) The detailed instructions for data transfer to SQL databases recommends deleting Global,
Unstored Calc and Summary fields prior to transferring the data. If these columns are deleted,
then the generated stack will display errors about missing columns unless these columns are
restored.

4) FileMaker databases containing repeating fields should be redesigned to eliminate the use of
repeating fields prior to conversion into the LiveCode application. FmPro Migrator Platinum
Edition makes this process possible during the database table migration process. Transfer the
repeating fields data to any SQL database using FmPro Migrator Platinum Edition. Then import
the related records back into a new table within FileMaker using an ODBC import from the SQL
database. Create a relationship from the parent table to the newly imported repeating fields table

LiveCode Conversion Procedure - 16

in FileMaker. Create portals on layouts to replace the original repeating fields. Then, when the
conversion process is done, the portals will be converted into data grid objects in the stack.

A Note About Other Databases

This migration process is specifically optimized for the conversion of FileMaker Pro databases
into LiveCode stacks. This is due to the fact that every layout and field in a FileMaker database is
expected to be data bound to a database table or column. However, Microsoft Access and Visual
FoxPro database applications may have fields which are populated with data via Queries or
FoxPro scripts.

After importing one of these other databases into FmPro Migrator, it could be beneficial to perform
a conversion of the database into a FileMaker Pro .fp7 database file. Then work on this file to
assign tables and fields to each field and layout so thatitis functional within FileMaker Pro. Then,
when all changes have been made to the FileMaker Pro database, import the FileMaker Pro
database into FmPro Migrator for conversion into the LiveCode stack. If these types of changes
are not made, itis likely that some converted cards will generate errors due to a missing table or
field names.

Importing FileMaker Pro Database Info into FmPro Migrator

1) Download and following the instructions in the How to Import FileMaker Pro Databases into
FmPro Migrator PDF manual from the FmPro Migrator support web page. Or, watch the videos
linked from the FmPro Migrator support web page. Select Help from the Help menu in FmPro
Migrator and your web browser will open this web page. Itis generally a good idea to migrate the
data into the SQL database, prior to migrating the Layouts into another development environment.

2) If you are transferring data from FileMaker Pro to a SQL database server, then download the
appropriate manual on the support page for the destination SQL database. The Pre-Migration
Preparation Process PDF provides another resource for migrating the data from FileMaker Pro to
SQL database servers.

At the completion of these procedures, your data should already be migrated to the destination
SQL database, and the Layouts, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

LiveCode Conversion Procedure - 17

http://www.fmpromigrator.com/support/fmpro_migrator/How_to_Import_FileMaker_Pro_Databases_into_FmPro_Migrator.pdf
http://www.fmpromigrator.com/support/fmpro_migrator/How_to_Import_FileMaker_Pro_Databases_into_FmPro_Migrator.pdf

Importing Microsoft Access Database Info

1) Prior to performing any of the migration procedures listed below, itis recommended that you
review the database structure of the Microsoft Access database(s) you are migrating. Itis
important to insure that each table is configured with a Primary Key column. FmPro Migrator looks
for columns having the Unique and Not Empty validation properties in order to automatically
determine which column should be created as a Primary Key column in the SQL database.

2) Download and following the instructions in the How to Import Microsoft Access Databases into

EmPro Migrator PDF manual from the FmPro Migrator support web page. Select Help from the
Help menu in FmPro Migrator and your web browser will open this web page.

3) If you are transferring data from Microsoft Access to a SQL database server, then you will likely
use an importing procedure to import the data from the Access .mdb/.accdb file(s) into the
destination SQL database. [FmPro Migrator supports directly copying data to FileMaker Pro
databases, but notinto SQL database servers.]

At the completion of these procedures, your data should already be migrated into the destination
SQL database, and the Forms/Reports, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

LiveCode Conversion Procedure - 18

Importing Visual FoxPro Applications

1) Prior to performing any of the migration procedures listed below, itis recommended that you
review the database structure of the Visual FoxPro project you are migrating. It is important to
insure that each table is configured with a Primary Key column. FmPro Migrator looks for columns
having the Unique and Not Empty validation properties in order to automatically determine which
column should be created as a Primary Key column in the SQL database. Also, columns marked
as NOT NULL should not contain NULL values, or the data transfer process will fail.

2) Download and following the instructions in the How to Import Visual FoxPro Projects into
EmPro Migrator PDF manual from the FmPro Migrator support web page. Select Help from the
Help menu in FmPro Migrator and your web browser will open this web page.

3) If you are transferring data from Microsoft Access to a SQL database server, then you mayuse
an importing procedure to import the data from the DBF file(s) into the destination SQL database.
Or you may use FmPro Migrator to transfer data from the DBF files into the destination SQL
database server.

At the completion of these procedures, your data should already be migrated into the destination
SQL database, and the Forms/Reports, Value Lists, Scripts and Relationships should have been
imported into FmPro Migrator.

LiveCode Conversion Procedure - 19

Adding the Button Bar Widget

FmPro Migrator will add the Button Bar widget to your new stack file automatically - and it will be
displayed during the conversion process. But this widget needs added to the LiveCode IDE
before it will be displayed within the stack from within the LiveCode IDE. Follow these instructions
to install the Button Bar widget.

Button Bar Widget - Unknown Module Error

Records:
/
Form: Login oo
revErrorDisplay
ti t 3:46:38 PM i oe 2
i : tack of the
LCB Error unknown module 'com.fmpromigrator.widget.buttonbar'
Object Segmented
LCB File segmented.Icb
LCB Line 427
Script

usSeitianice.

If you open the newly created Application.livecode stack before installing the Button Bar widget,
you will see the Unknown Module error dialog.

This error will not occur during the actual conversion process because the Button Bar widget is
builtinto FmPro Migrator and is displayed on screen during the conversion process.

Button Bar Widget - Uninstalled Widget Outline Displayed in Browse Status Area Group

Application (background "Browse_Status_Area_group")

Records:

Form: Login s

If you close the error dialog and edit the Browse Status Area/Find Status Area groups, you will see
the Button Bar widget outline when clicking on it.

LiveCode Conversion Procedure - 20

Download Button Bar Widget - LiveCode Store Web Site

livecode.com/extensions/

k< %3] i
L|VE@E Why LiveCode? Customer Stories Docs Pricing St
TYPE v Sortby: Relevance v View 15 | 30 | 60 Page: 1v of2
Library

Widget - Dli'lo
AUTHOR utton Bar

.com Solutions Inc.
Download Now

A Slug on the Road Piano Widget

e (D) CEEID

Andrés del Toro Cruz
Bill Vlahos

Biornke

The Button Bar widget can be downloaded from the LiveCode store at
https ://llivecode.com/extensions/
Download and unzp the Button Bar widget folder.

The Button Bar widget is not yet available within the store link in the Extensions Manager of the
LiveCode IDE.

LiveCode Conversion Procedure - 21

https://livecode.com/extensions/

Download Button Bar Widget - FmPro Migrator Web Site

FmPro Migrator for macOS- FmProMigrator11.01DEmacOS.dmg (72 Mb)
This version of FmPro Migrator is supported for use with macOS version 10.13 and higher.

FmPro Migrator for Windows: 64bit - FmProMigrator11.01DEWindows_64bit.zip (39 Mb)
FmPro Migrator for Windows: 32bit - FmProMigratorl1.01DEWindows_32bit.zip (37 Mb)
This version of FmPro Migrator is supported for use with Windows 7/Windows 8/Windows 10/Windows 11.

ReadMe.txt - The ReadMe file contains installation instructions and usage notes for all versions of FmPro Migrator.

Table Consolidation Utilities

Table Consolidation Layout Troubleshooter [PDF Manual]
macOS - TableConsolidationLayoutTroubleshooterl.05mac0S.dmg
Windows - TableCosolidationLayoutTroubleshooter105Windows.zip

LiveCode Conversion Project Utilities

LiveCode 9 Button Bar Widget
com.dotcomsolutionsinc.widget.buttonbar 101 LC9.zip

macOS - RelationshipsJSONEditor1.0.2 _mac0S.dmg (7.8Mb)
Windows - RelationshipsJSONEditor1.0.2_Windows_64bit.zip (7.6Mb)

The Button Bar widget can be downloaded from the same web page where FmPro Migrator was
downloaded. Download and unzp the Button Bar widget folder.

The Button Bar widget is not available within the store link within the Extensions Manager of the
LiveCode IDE - butitis available from the LiveCode store website as a free download.

LiveCode Conversion Procedure - 22

Extension Builder Window

o Extension Builder

Extensions Button Bar T

Icons D&D D0

Resources No resources found in extension

Default Script - Sent when a button is clicked

on buttonClicked pButtonName
-- branch based upon name of clicked button
switch pButtonName

raca 'firot"

Edit

APl No API| data foun
User Guide No user auide found

Log

4:13 PM: Skipping recompilation of
/Users/dsimpson/fmpro_migrator/LC8_SVG_ButtonBar_Widget/com.fmpromigrator.widget.buttonbar/moc
- module is up to date

0,

Package Uninstall Install | Script’ jf Test |

From within the LiveCode IDE, select the Tools -> Extension Builder menu item. (1) Click the
folder icon in the upper right corner of the Extension Builder window, select the buttonbar.lcb file
from the Button Bar widget folder. (2) Click the Install button.

Quit and re-open the LiveCode IDE so that the dictionary entries are displayed for the new widget
you have justinstalled.

LiveCode Conversion Procedure - 23

Button Bar Widget - Displayed in Browse Status Area Group

Application (background "Browse_Status_Area_group")

K()H@QQQ L

First Previous Next Last Show All Add Delete Find

Once the Button Bar widget has been installed, open the newly created Application.livecode
LiveCode stack to see itdisplayed.

Button Bar Widget - Displayed in Find Status Area Group

Application (background "Find_Status_Area_group")

HK<>Hnamooeanm ™ &

First Previous Next Last Show All Add Delete Find Browse |

Form: Login 2 Records: 1

Clicking on the Find button in the Browse Status Area group, will display the Find Status Area
group.

LiveCode Conversion Procedure - 24

Converting to a LiveCode Stack

Step 3 - Convert Database to LiveCode

(XN | Migration Process

- TOs CFs

Convert Layouts
to HTML:

Click the Convert
Layouts to HTML
button to convert
each FileMaker Pro
layout into an HTML
file. Each file includes
fields, text labels,
images, graphic
objects and
JavaScript code for
implementing portals
and pop-up calendar
pickers.

Tables Relationships Value Lists Layouts Scripts

Lot

' =
Convert Layouts
to HTML

Access to FmPro
Migration

C

LiveCode
Conversion

Loy

. =
Export Layouts
as XML

FmPro to Access
Migration

®=

'BASIC to LiveCold
Conversion

Conversion

000

Servoy
Migration

Export Layout XML:
Click the Export
Layouts as XML
button to export the
layout definition XML
for all layouts as text
files. Each layout is
exported as a text file
within a folder named
Layout_XML_Files
within the output
directory.

Visual FoxPro
Conversion

Access to FmPro
Migration:

Conversion

Click the LiveCode Conversion button to open the LiveCode Conversion window.

LiveCode Conversion Procedure - 25

LiveCode Conversion Window

() Convert Database to LiveCode

= ‘g =»LIVE

Instructions:

Desktop, Mobile, Server

Migrate Databases

to LiveCode:
Step 1) Import Layout Qty: 21 o
information about the
Output File Type: icati
FileMaker Pro, or I Application - e

Access or Visual

FoxPro project into Card Script Statusg Normal Y
FmPro Migrator

Platinum Edition. Database Framework: sQL &

Step 2) Select the

type of LiveCode

stack file to create:

Application.

Note: FmPro Migrator

will delete & re-create

the stack file named Q @

Application.livecode 21 Layouts Processed in 11.1 Sec. 0
—= 34 Scripts Processed.

in the output directory. Export
J Migrate Q

- Template -
Some of the features available in the LiveCode Conversion window include:

Step 3) Select either Stack |

B |

(1) The Layouts Qtylabel displays the number of layouts which will be converted. This number
represents the number of layouts which have been captured and stored in the FmPro Migrator
project file.

(2) Outputfile types include: Application.

The horizontal Button Bar widget and status area will be added to the stack instead of the
previously used vertical status area.

(3) Card Script Status options include: Normal, Commented.

Sometimes you maywant to just convert a database and then quickly see the results without
converting the data or building a database. Selecting the Commented option comments out the
getData and refreshFields handlers on each card. No errors will be displayed navigating between
cards due to there not being a database available.

(4) Processing Status - Lists the number of layouts, scripts and elapsed time for the processing.
(5) Export Template Stack button - Exports the template stack into a file named Application.revin
the output directory (overwrites existing copies).

LiveCode Conversion Procedure - 26

(6) Code Conversion Wokbench button - for converting scripts into LiveCode from FileMaker,
Microsoft Access or Visual FoxPro.
(7) Migrate button - Click this button to perform the migration.

Post Conversion Development

M < > N &8 O @ Q T

First Previous Next Last Show All Add Delete Find
Form: Assets v16 u
First Last
w ¥ QM B & = =) O

abc23456

abc23456

phone01 1111111111

1341343 1341343_2 1341343_3

Notes123

The Post Conversion Development section of this manual provides a flowchart of the steps
needed and LiveCode utility stacks included for use after the stack has been created.

In addition to converting the FileMaker layouts, FmPro Migrator Platinum Edition also converts
FileMaker scripts into LiveCode scripts. These scripts will be placed into two output files will be
written to the output directory:

FmPro Original Scripts.txt file - This is a text version of the original Script Workspace scripts, and
is made available for documentation purposes so that LiveCode developers can review the
original unconverted scripts.

FmPro Converted Scripts.ixt - This text file contains the converted LiveCode code. Anyinstructions
which could not be converted will be commented and the original comments will be retained
within the scripts.

LiveCode Conversion Procedure - 27

Supported FileMaker Pro Layout Object Types

The following FileMaker Pro Layout object types are currently supported by the conversion
process:

Fields
Custom Value Lists
Field Value Lists

Merge Fields

Portals

Text

Lines

Charts [LiveCode 8+]
Rectangles

Rounded Rectangles
Ovals/Circles
Grouped Objects
Images

Buttons

Popover Buttons

Tab Controls
WebViewer

Each FileMaker Pro layout object is re-created as an equivalent LiveCode card object, using the
formatting and style attributes of the original object.

Stylized FileMaker Pro layout text objects are converted into LiveCode text labels, having the
embedded text styles of the original object defined with the HTMLText property.

The supported field display options include Check Box Set, Radio Button Set, Pop-Up Menu, Drop
Down List and Calendar. Pop-Up menus and Calendar objects are created with embedded Rev
script code to automatically populate the underlying field.

Note: The Chart objectis converted into a LineGraph widget when LiveCode 8+ versions are
selected. Some additional work will be required to populate the LineGraph widget with data, as it
is placed onto the card as a placeholder. Since the LineGraph widget does not support all of the
chart types supported by FileMaker, 3rd party charting tools including ChartsMaker and
ChartsEngine may also be considered.

Unsupported FileMaker Pro Layout Object Types

The following FileMaker Pro Layout object types are not currently supported by the conversion
process:

LiveCode Conversion Procedure - 28

Conditional Formatting - Conditional formatting can be used to automatically resize fields and
change the appearance or color of field data based upon a calculation formula. The automated
resizing or movement of objects can be done by using LiveCode's Geometry Manager. Within
LiveCode, the movement of objects can even be made dependent upon the movement of other
nearby objects, offering more control of objects than is available within FileMaker Pro.

Embedded Page#, Date, Record# Layout objects - These objects should be manually replaced
with some other object like a text label holding the data to be displayed. Plus the addition of a little
bit of revTalk code to display the proper Page#, Date etc. However the record# is presently
displayed within the record number field in the status area, under the record navigation slider.

Cosmetic Changes Required - Example #1

K < > N & O @ Q T s

First Previous Next Last Show All Add Delete Find

Form: Assets v13 [V)

—

) Pre

viou
F+

Firs

T

@
i
2
x
=
=
2
7
=

' X L M

lepho -
phone01 1111111111
1341343 1341343 2 1341343 _3
Notes
2007-12-11 = 2007-12-11

3.0

In general, each created object within the LiveCode stack will appear very similar to its counterpart
in the original application. However, some changes may be required within the generated stack
file. This image of a converted LiveCode stack file shows 3 changes which should be made:

1) The Help button icon has been created, but the (?) image is sitting under the shadowed circle

LiveCode Conversion Procedure - 29

object. FmPro Migrator Platinum Edition builds each layout objectin the order itis found within the
Layout XML file. Therefore some objects may be created in the wrong order for display purposes.
The solution is to change the layer of each object so that they display properly. The shadowed
circle object was also moved left by 1 pixel.

2) The text over the purple rectangle objectis displayed a little bit too high.

Cosmetic Changes Applied - Example #1

K < > N & O @ Q T

First Previous Next Last Show All Add Delete Find
Form: Assets v13 ren
Eirsh) Grevious Flexd (Gasd) o
X%, LN B B = n 2
[1
Item
Tel n -

phone01 1111111111

1341343 1341343_2 1341343_3

Notes

=== O

2007-12-11 2007-12-11

3.0

Click on the group named "Layout Objects Group", click the Edit Group button in the LiveCode
IDE to make changes to the objects on the card.

This image shows the stack after the 3 cosmetic changes were made.

1) The graphic was adjusted by sending the white circle to the back of the canvas.

2) The text label margin property was adjusted from 2 to 8 to change its position to be more
readable.

LiveCode Conversion Procedure - 30

Original FileMaker Pro Layout

‘806 Asset_Management2
Layout [
DIQMIG s '
Layout: i
Form ;] i
1 <<Item>> <<Category>>
T
1 Item.
o—
Layout: Catego Category.
: Magel
Total -
12 senal £ Gerjal. Number[1] Picture
AN 2
Oool|s A
A
=R Note Information,
Field 5
Part ¥
o
Q@
u Purchased DRate.Purchase) = Rate.Placed.....
hl EB 1pt
From Purchased.From |
/B[S .
S & <) S—— | A
v
100 LB = Layout [c—]) <

And for comparison purposes, here is an image of the original FileMaker Pro Layout.

LiveCode Conversion Procedure - 31

Cosmetic Changes Required - Example #2

006 Application

B 1l
%S¢ | Glob: Glob Glob Glob Glob: GlobalTable:logo Glob: Glob: Glopzpent Glob: Globi py m

Layout: Exce PDF

Client 13 p'-? Ema Globa

B GlobalTable::dbMaintenanceM Emg::e cloba
D - Detail Form s

GlaohalTahle aDacServerErrar
r—

Date ClientTy

ClientClient Inactive [] By

Client Inactiy
__Clisnt-Firet Nama J Creation Date | ji.ni-Creation Balance
Total: LastName | rjionr-t act Name

10 Stable Name | jiony-Siahls Name

Address #1 | clipnt- A ddroce #1 | Horses Owned (actve) 0
Address #2 Clisnt A ddrece #2 Horses Owned By This Clent
City Client (it 1D Name
State
Zip
Home Phone#
Office Phone#
Fax#

First Name —
Cli
Account Refient__Account Rep_mer

(“lisnt - Stats

Clisnt7in

ClisntHams Phans Numher

Client N ffice Phans Numher

| ClientFay_Numher
Cell# | rliont-oll Phane Numher
Glot Email | ;.

ntEmail Client"Email Ty

Email2 Client"Fmail? Client"Fmail? T

Email3 ClientEmail3 Client"Email3 T

FullName [T 1
Address ——entEull Nama Horses Owned (Inactive)
Client: Address Inactive Horses Owned By This Client

1D Name

(3 4 »

Here is another converted Layout stack file which needs different cosmetic changes:

1) FmPro Migrator Platinum Edition creates each LiveCode field as an opaque field, in order to
insure that fields having a background color are displayed properly. Text objects however, are
created with their opaque property set to false, allowing other objects to show thru. But the
dbMaintenanceMessage object shown on this layoutis not a Text object, itis a field object, so it
has been created to be opaque - thus hiding the text label which it overlaps. Therefore in this
location, the dbMaintenanceMessage field should have its opaque property set to false.

2) This horizontal line is supposed to be colored green, but the correct color was not properly
located within the original XML code. This same problem also occurs with the objects marked (4)
and (5). However the remaining horizontal line objects on this same layout (not shown) did retain
their correct colors.

3) These two text label buttons ended up wrapping within the field. Changing the text margin from
2 to 4 and widening the fields solved these issues.

LiveCode Conversion Procedure - 32

Cosmetic Changes Applied - Example #2

006 Application
Browse | Glop; Glob Glob Glob Glob: GlobalTable:logo Glob: Glob: Glop;pant Glob: Glob: py Prin
Layout: Excal PDF
m - Email GlobalTabIe::E‘ Eme
: : GlobalTable &
. | GlobalTable:dbMaintenanceMessage Ema!: - EB%S'
. . mail -
&5 Client Record - Detail Form
GlahalTahleaDacServerFrrar
Record: Client ID ClientClient Inactive : BY | Client-Inactis Date | (jiont-inactive Date
1 FirstName | rjione-Firet Namo Creation Date | (jion-Creation Balance | yii-client R
Last Name I ;
Total: Clisnt 1 act Nama Account Refient__Account_Rep_mer
10 Stable Name | (jioni--Stahls Nams
Address #1 | (jiont-- A ddrace #1 Horses Owned (Acive)
Address #2 | i A ddrece #0 Horses Owned By This Client: TSl
CtYy | riontcinw ' Name o
State | rjione-state
le Cliont7in
Home Phone# | jin-tiame Phans Numsher
Office Phone# | ;.. (ttice Phans Numhor
Fax# | cjipniFay Numhor
Cell# | rlisntall Phana Numhor
Glot Email | jiong-Fnmil Client"Fmail D
Email2 Client Email? ClientEmail? T
Emaild | cjiont-Fmaily ClientFmail3 T
Full Name CleneRullN
isnt Enll Nama
Address Horses Owned (Inactive)
Client:Address Inactive Horses Owned By This Client: TSl
1D Name (FM)

This image shows the stack after the 5 cosmetic changes were made.

LiveCode Conversion Procedure - 33

Customizing the LiveCode Stack Conversion Process

Fmig_Preferences.xml File

<?xml version="1.0" encoding="UTF-8"7>

<Preferences>

<DBToRev type="DBToRev'>

<StackTemplate filepath="/Desktop/LiveCode_Conversion/LiveCodeTemplate®2.livecode"/>
</DBToRev>

</Preferences>:

FmPro Migrator utilizes an optional XML preferences file which can be used to customize the DB
To LiveCode conversion process. This XML template file can be placed into the FmPro Migrator
directory within the /User/Library/Preferences (or My Documents on Windows) directory to
customize the generated stack file.

Using a Different StackTemplate File

The StackTemplate option enables LiveCode developers to extract and customize the standard
template stack embedded within FmPro Migrator. Click on the Export Template Stack button on
the Database to LiveCode window to extract the existing template stack file to the output directory
(it will overwrite any existing file). You should move or rename this file and update the XML
preferences file to point to the modified version of the file.

The custom version of your template stack file will be copied into the output directory, renamed as
Application.revand used as the destination stack where all of the converted layout objects will be
created.

This means that you can add that one line command from article #3 into the showAllIRecords
handler in the card stack, and that correction along with any other changes you make will
automatically be used as your new template stack. You might also want to change the look of the
status area. You could create a new status area across the top of the card, to simulate the look of
newer versions of FileMaker Pro. Or you might turn the status area into a floating palette.

LiveCode Conversion Procedure - 34

The Template Stack

e 06 Application Browser
Name | Num < | @ |1 Layer | Control | J
v jAppIica!ionlS 219 ’}‘/ v v 38 blue_horiz_bars_white_over_hlue32_80_01.png 0
1O Images 2 0 f. v v 1 Browse_Status_Area_group 0
1O TemplateCard 1 0 =y v 40 Calendar_icon_11x10.png 0
) AudioClips a\ v v 9 current_record_fld 0
. VideoClips a\ v v 22 current_record_fld 0
> acalendarWidgethO 17 a\ v v 8 current_record_lbl 0
a v v 2 current_record_lbl 0
7 v v 35 Edit 24
2 v v 4 Edit_Scripts_btn 3
7 v v 34 File 19
_) v v 24 Find_btn 0
(%) v 14 Find_Status_Area_group 0
2 v v 43 FmPro_Scripts_btn 1
C v 39 green_horiz_bars_white_over_green32_80_0l.png 0
2 v v 37 Help 0 4
? v 4 1 assmios Donssma Rada smanis a Y
2 Cards 45 Controls

FmPro Migrator Platinum Edition uses an internally-stored template file for the LiveCode stack
which it generates from the FileMaker Pro Layouts. This file is written to the output directory as a
file named Application.rev at the start of the conversion process.

LiveCode developers can supply their own stack in place of the Application.revfile, in order to
make use of their own customized handlers and graphics. FmPro Migrator Platinum Edition
always deletes and overwrites any existing Application.rev stack file.

Areplacement template stack can be specified in the FmPro_Migrator_Preferences.xml file.

Areplacement template stack should have the following features, in order to be compatible with
FmPro Migrator Platinum Edition:

setLayoutList - stack-level handler - This handler puts the list of cards into the Layout list menus
of the Browse and Find groups. If you don't want to have this feature, you can simplyinclude a
handler having this same name but containing no executable code.

displayCalendar - stack-level function - This handler displays the calendar pop-up menu within
fields which have this feature configured within the original FileMaker Pro Layout. This function
returns empty or the date picked by the user.

browserilnit

browserGo

browserEnsure

browserFinalize

browserBack

browserForward

browserRefresh

browserStop

These stack-level handlers control one ore more revBrowser controls on a card. Each handler
takes a parameter (pBrowserNum) as the number representing the Browser control, and is used

LiveCode Conversion Procedure - 35

to define its name on the card. There could be multiple FileMaker WebViewer objects on a single
Layout, therefore each WebViewer will be converted into a separate Revolution Browser control
having a different name on the card.

statusAreaWidth - stack-level customProperty - This custom property indicates the width of the
Status Area at the left side of the window. The Layout_Objects_Group is automatically moved over
to accommodate the width of the Status Area after all of the cards have been created. Set this
custom propertyto O if you don't want to have a Status Area within your template stack.

templateStackName - stack-level customProperty - This custom property provides the name of
the template stack file.

segmented Widget - When FmPro Migrator builds a segmented widget, it copies the Segment
Group containing a sample segmented widget from the Images card of the template stack.
Updating the properties of this segmented widget will cause all of the newly created segmented
widgets to have the same basic color properties for instance.

LiveCode Conversion Procedure - 36

FmPro Custom Property Set

Each card in the generated LiveCode stack file includes a custom property set named FmPro.
This custom property setincludes detailed info about the field objects which have been created
on the card by FmPro Migrator Platinum Edition. This information is expected to be useful for
LiveCode developers who want to create data entry/validation and data display handlers for each
of the fields on the card. This info is also used by the handlers which clear field data upon
entering Find mode and when filling each field with data.

Having the fields listed in a custom property set also means that developers don't have to
manually type in each of the field object names into their code either. Justloop thru the lines of
data in the custom property set to work with the names and data types for each field on the card.

FmPro - customPropertySet Overview

0O card "Form”, ID 1144
Custom Properties 5 | , L
' =

Custom Properties: rah 154
Version
baseTable
fieldList
fieldsCount

Set: | FmPro _:) At ik
Property Contents: > H

[Asset_Management2__Picture_fld O
Asset_Management2:Picture

Picture

NULL

fid

fld

32
s

221.00

There are 4 customProperties within the FmPro customPropertySet.

LiveCode Conversion Procedure - 37

Version - customProperty

The Version customProperty defines the version of the customPropertySet schema. The current
value for the Version customPropertyis 1, this value will change as enhancements are made to
the FmPro customPropertySet.

baseTable - customProperty

The baseTable customProperty represents the name of the base table referenced by the original
layout.

fieldList - customProperty

fieldsList - Custom Property Rev Object Original FmPro SQL Table SQLYoga SQLTable SQLTable Rev Object

(Columns 1-7) Name Name Name Relationship Column Column Type
Name Name Type
Example Data -->> Field1 _fid Client::ID client client ID DECIMAL fid
Field2 menu Client::Client Name client client Client_Name DATE btn

fieldsList - Custom Property Usage Entry Currency Thousands Decimal Decimal Negative True False

(Columns 8 - 16) Type Options Symbol Separator Point Digits Color (RGB) String String

Flag
Example Data -->> fid 0 $. . 2 255.0.0 Yes No
fieldsList - Custom Property Date Separator Date Element Date Element Date Element Time Separator Time AM
(Columns 17 - 22) Char Separator1 Separator2 Separator3 Char String

Example Data -->> <<-- space <<-- space <<-- space : AM

fieldsList - Custom Property Time PM String
(Column 23)
Example Data -->> PM

The fieldsListis a TAB delimited list providing 23 parameters for each field which has been
created on the card. These parameters are shown in the screenshot with sample values and are
listed below:

(1) Rev Object Name - The name given to the LiveCode field when it was created.

(2) Original FileMaker Pro Field Name - This is the name of the Table Occurrence::Fieldname in
the original FileMaker Pro database.

(3) SQL Table Name - The converted name of the original table, as it appears in the SQL
database.

(4) SQL Yoga Relationship Name - If the field is in another table, the relationship name to use to
getthe data from the table.

(5) SQL Table Column Name - The converted name of the SQL database column name.

(6) SQL Table Column Type - The type of data contained in the field, matching the field types for
the destination SQL database.

(7) LiveCode Object Type - The type of LiveCode object. Use this object type and its name when

LiveCode Conversion Procedure - 38

referencing the object.

(8) Usage Type - The wayin which the objectis used on the card, either as a field or a menu. This
parameter indicates whether you need to put data into the field (for a field) or into the label of an
object (for a menu).

(9) Entry Options Flag - The entry options for entry of data within a field, as defined by the fieldObj
flags XML parameter in the original layout. Multiple options may be applied to a field
simultaneously. To determine if a particular value is selected, use the bitAND Revolution
instruction. See the following screenshot for more details.

(10) Currency Symbol - The symbol used for currency values.

(11) Thousands Separator Symbol - The symbol used to separate thousands, in numeric values.
(12) Decimal Point Symbol - The symbol used for decimal points in numeric values.

(13) Number of Decimal Digits - The number of values displayed to the right of the decimal point
symbol

(14) Negative Color (RGB) - The RGB values, separated by commas which should be used for
negative numeric values.

(15) True String - The text string used for true values.

(16) False String - The text string used for false values.

(17) Date Separator Char - The symbol used for separating short date values. (i.e. MM/DD/YYYY).
(18) Date Element Separator1 - The first date separator character string, used when displaying
dates in long format.

(19) Date Element Separator2 - The second date separator character string, used when
displaying dates in long format.

(20) Date Element Separator3 - The third date separator character string, used when displaying
dates in long format.

(21) Time Separator Char - The symbol used for separating time values (i.e. HH:MM:SS)

(22) Time AM String - The suffixstring used for displaying AMtime values.

(23) Time PM String - The suffixstring used for displaying PMtime values.

Entry Options Details - (fieldObj flags values)

fieldObj flags Result

0 Enter field - Browse & Find Modes - No other Options checked
4 Entry in Find Mode Only - No other options checked.
16 Entry in Browse Mode Only - No other options checked

20 No Entry in Field - No Goto Next Object options

52 Enter field - Unchecked for Browse & Find Modes - TAB key Goto Next Object checked
84 No Entry in Field - Return Key Goto next Object checked

148 No Entry in Field - Enter Key Goto Next Object Option is checked

256 Vertical Scrollbar on Field

1024 Display calendar icon when entering field

Multiple entry options can be applied to the same field. To decode these values, use the LiveCode
bitAND command as follows:
put varFieldEntryOptions bitAnd 4 into tResult

LiveCode Conversion Procedure - 39

if tResult =4 then set the lockText of field Field1_fld to true

LiveCode Conversion Procedure - 40

FileMaker Converted Script Steps

These script steps represent the FileMaker script steps which are directly converted into LiveCode
by FmPro Migrator.

Note: Using the Code Conversion Workbench feature of the Al Accelerated Edition of FmPro
Migrator enables the conversion of all script steps and lines of code from FileMaker Pro, Micros oft
Access and Visual FoxPro.

List of Converted Script Steps

The following list documents the script steps which are converted from FileMaker scripts into
LiveCode commands:

Go to Layout
Perform Script
Beep

#

Copy

Cut

If

End If

Else

Exit Application

Exit Script

Freeze Window
Halt Script

Open URL

Paste

Perform AppleScript
Print Setup

Print

Refresh Window
SelectAll

Send Event

Set Error Capture
Send Mail

Set Field

Set Variable

Show Custom Dialog
Show/Hide Status Area

LiveCode Conversion Procedure - 41

Enter Find Mode
Enter Browse Mode
Speak

LiveCode Conversion Procedure - 42

Post Conversion Development

LiveCode Conversion Procedure - 43

Overview of Post Conversion Development - LiveCode Conversion

Overview

N < > M & O @ Q T

First Previous Next Last Show All Add Delete Find

Form: Assets v16 B

By New S u\ T
abc23456

Item abc23456
Category
Model phone01 1111111111 - B

ial 1341343 1341343_2 1341343_3

L =] O

ote Notes123

Aconverted application will generally display data in most fields and portals and provide record
and form navigation via the Button Bar status area at the top of the window.

There will be additional steps required in order to have a fully functional application ready for
production deployment. Asummary of these tools is discussed below.

The first tool you will probably use is the JSON Connection File Builder utility. This tool makes it
quicker and easier for you to log in the converted application into the database server without
manually re-typing login credentials manytimes per day.

LiveCode Conversion Procedure - 44

JSON Connection File Builder

JSON Connection File Builder 1.0

www.FmProMigrator.com

v
eyt

This utility builds a JSON file containing

JSON database connection info for automatic
logins using the stack built by FmPro
Migrator Platinum Edition.

Username:

Password:

<

Database Type: MySQL
Database Name:
Database Port:

Database Hostname:

Build JSON

The JSON Connection File Builder builds a database connection JSON file named
DBConnection.JSON.

This JSON connection file has 2 main uses:

1) During development, you can quickly log the application under developmentinto your test
server without having to manually enter connection details.

2) For production usage, you can create connection files having the database type, name, port,
hostname info pre-filled for users to log into the database server. Fields which are missing from
the DBConnection.JSON file will be filled in by the user during login.

For more details, see the the section of this manual describing the JSON Connection File
Builder.livecode stack.

LiveCode Conversion Procedure - 45

Process Flowchart

Start

Data Transfer To :
— D
SQL Database
J

FmPro Migrator

LiveCode Conversion

v

JSON Conlnectlon File { 3 1}
Builder ?
JSON
\17 JSON Connection File Builderlivecode
FM Functi
y unctions
emapping
$ FM Functions to LiveCode Mapping.livecode
FM Scripts
Integration & Testing
Relationship Relationships JSON [-1
No Changes? D{ Yes P Editor > L)
M
i Relationships JSON
Editor (App)
Update Application
Stack
l Relationships.JSON
SQL Column SQL Column Types
No j< Changes? D Yes D> JSON Editor
Validation Update Application .
Testing <t— Stack P { ' }
[lterate As Needed] SQLColumnTypes.JSON

v SQLColumnTypes
Build & Ship JSON Editor (App)
Standalone App

This flowchart provides an overview of the tools provided for the LiveCode conversion process
and their usage during development. These tools are described in detail later in this manual.

LiveCode Conversion Procedure - 46

Conversion Process Output
Files

LiveCode Conversion Procedure - 47

Overview of Conversion Files

Overview

This chapter of the manual describes the various output files created by FmPro Migrator when
performing a LiveCode conversion project.

LiveCode Conversion Procedure - 48

Application.livecode

Application.livecode Overview

[NON) Project Browser

® [T Application63H_LC9.livecode
—© W Login

—@© @ Assets v16

—@© @ Images

—© [calendarWidget100

—© [Data Grid Templates Fmig
O fmFunctions_Library

—© [Globals_Library

— @ [Images_Library

—@ [sQL_Library

—© [Stored_Calc_Library

—© [Unstored_Calc_Library

—
- w B N
[V Y B Y N w
sjspafolal 2l she] el - B

O Validation_Library 230
L O Value_List_Library 350

The main stack created by FmPro Migrator is the Application.livecode stack. All of the
layouts/forms, Value Lists, relationships are placed into this stack during conversion. Scripts are
also written to disk for further processing.

The utility stacks created by FmPro Migrator are available to help with further development of the
scripts, calculations and relationships.

Regarding scripts, these should probably be added to new library stacks based upon the
functionality of the application. For instance an application might have functionality including
Invoices, Customers, Scheduling which could each be placed into separate library substacks.

LiveCode Conversion Procedure - 49

Corrupted Images Report.txt

Corrupted Images Report

Layout: Assets v13 Object: imagell Location: L: 1143 T: 148 B: 176 R: 1160 263,5742,1
Layout: Asset_Management2 Object: image6 Location: L: 44 T: 55 B: 83 R: 61 263,5742,1
Layout: Companies Object: imagell Location: L: 1143 T: 148 B: 176 R: 1160 263,5742,1
Layout: Address_Book Object: image6 Location: L: 44 T: 55 B: 83 R: 61 263,5742,1

During the conversion of layouts to LiveCode cards, some image objects might not be readable
within the imported layout XML code. If this problem occurs, the Corrupted Images Report.ixt file
will be created in the project directory. These errors will need to be fixed manually byimporting an
image object manually into the converted stack.

In order to facilitate making manual fixes to these missing images, each line of the report
contains:

Layout: The name of the layout where the error occurred.

Object: The object name assigned to the object by FmPro Migrator when attempting to create the
image object.

Location: The coordinates where the new object was supposed to be created.

Error - The last part of the line is the internal LiveCode error which occurred during the import
paintcommand.

The LiveCode Error Lookup stack created by Jacqueline Landman Gay can be used to look up
the LiveCode internal errors. It is available here:
http://livecodeshare.runrev.com/stack/712/LiveCode-Error-Lookup

For the first error shown as: 263,5742,1

263 - import: can'tread file, mask file or display. Not much to be added here, itjust means that the
import paint command cannot read the contents of the file being imported. FmPro Migrator
exports images into a temporaryfile, then uses the import paint command to import the image
onto the card at the specified location.

5742 - This is the line number of the script within FmPro Migrator where the import paint
command was run. As a user, there is isn't much you can do with this info, but it could be helpful

for .com Solutions Inc.

1 - Column number of the error.

LiveCode Conversion Procedure - 50

http://livecodeshare.runrev.com/stack/712/LiveCode-Error-Lookup

Suggestion Text - This section of the error resultis empty, because the LiveCode engine doesn't
have any suggestions to offer. In general, itis possible that the image is really corrupted or
possibly not able to be read and converted correctly within the source XML defining the layout.

LiveCode Conversion Procedure - 51

Duplicate Objects Report.xls

Duplicate Objects Report Overview

@0 Atcsae @ AEHEOYY = & Duplicate Objects Report — Saved to my

Home Insert Draw Page Layout Formulas Data Review View (Tellme

|_gg Calibri (Body) vi12 v A A == ®v ab, Wrap Text v General
[3 v
e = B I U v 0 O ov A v = = = €= 5= Merge & Center v $ v9% 9 SOl

B6 : fx sys_clear_password

A B ©
1 |Object Type Object Name Notes
2 |Layout Layout 3 Skipped - Reason: Duplicate Layout Contents.
3 | Script a___ system Skipped - Reason: Duplicate Script Name and Contents.
4 Script sys_move_window Renamed As: sys_move_window_60 - Reason: Duplicate Script Name, Different Script Contents.
5 Script sys_move_small_window Renamed As: sys_move_small_window_61 - Reason: Duplicate Script Name, Different Script Contents.
6 |Script Isys_clear_password lRenamed As: sys_clear_password_83 - Reason: Duplicate Script Name, Different Script Contents.
7 | Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.
8 |Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.
9 |Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.
10 'Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.
11 Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.
12 Script a___ print Skipped - Reason: Duplicate Script Name and Contents.
13 Script a___ navigation Skipped - Reason: Duplicate Script Name and Contents.

a___ print Skipped - Reason: Duplicate Script Name and Contents.

14 Script

FmPro Migrator analyzes scripts, layouts and custom functions during conversion to determine if
any duplicates will occur in the converted application. Duplicates can occur if multiple FileMaker
databases are combined together for conversion. Achecksum is created for each of these
objects and a comparison of the checksum and the name of the objectis made in order to
determine if the object should be skipped or renamed.

This reportis saved as a TAB delimited file having an .XLS file extension so that Excel will
immediately open it (with a warning thatitisn'treallyan XLS file).

LiveCode Conversion Procedure - 52

Missing Tables Report.xls

Missing Tables Report Overview

Autcsave @ A B E O = 2 Missing Tables Report

Home Insert Draw Page Layout Formulas Data Review view ¢ Tellme

uD v [x Calibri (Body) v12 v A A = == 7 v ab, wrap Text v Ge
Paste B I U-+v v v Av = = = €= 5= [&] Merge & Center v $
A9 m Jx

>
w
(@]
o
m
g

Total Layouts = 414
Layouts Skipped = 4
Layout Name

Dashboard -----
Statement -----

00 NO U A WN R

The Missing Tables Reportlists the layouts which could not be converted because they didn't
have a table assigned to the layout. This problem will commonly occur with placeholder layouts
used as group separators. So in many cases, nothing needs to be done - itis justan informative
report.

Note: Since this reportis also created as a TAB delimited file designed to be read by Excel, some
layout names might not be displayed if they start with "--" characters. Since the file is a text file, it
can also be opened with any text editor if Excel won't read the file properly.

LiveCode Conversion Procedure - 53

create_relationships.sql

create_relationshps.sql Overview

é ——————————————————————— RejlfaisionshipRErea o NS O I e e C e

-- This output file was created by FmPro Migrator at 1:27:08 PM on Tuesday, October 20,
2020. By .com Solutions Inc. www.fmpromigrator.com

-- Source Database:

-- Destination Database: MySQL

-- Source DB Relationship Count: 1

-- Duplicate Relationships Skipped:

-- Non-EquiJoin Relationships Skipped:
-- Relationships Created:

(o BN oI

-- [FM] tbl_Maintenance_Records->tbl_Assets => [SQL] tbl_Maintenance_Records->tbl_Assets
ALTER TABLE tbl_maintenance_records DROP INDEX tbl_maintenance_records_asset_id_idx;
CREATE INDEX tbl_maintenance_records_asset_id_idx ON tbl_maintenance_records(asset_id);
ALTER TABLE tbl_maintenance_records DROP FOREIGN KEY fk_tbl_maintenance_records_asset_id;
ALTER TABLE tbl_maintenance_records ADD CONSTRAINT fk_tbl_maintenance_records_asset_id
FOREIGN KEY (asset_id) REFERENCES tbl_assets(id) ON DELETE CASCADE;

-- [FM] tbl_Assets->tbl_Maintenance_Records => [SQL] tbl_Assets->tbl_Maintenance_Records
-- Skipped: Duplicate Relationship

During the conversion process, the list of relationships are read in order to create the
create_relationships.sql file. This file should be run on the database server used by the
application in order to create the table constraints.

LiveCode Conversion Procedure - 54

Missing Relationships Report.xls

Missing Relationships Report Overview

@0 Atcsave @ AHEBEOYY - 2 Missing Relationships Report

Home Insert Draw Page Layout Formulas Data Review View Tellm

- = = = — B8 ab

D‘v & Calibri (Body) v12 v AA = & @Y | | General
Ly ===g.

Paste B I Uv Hiv <dv Av == $v% 9
D7 = fx

A B (e D E E

1 Object Name Card Name Relationship (Missing)
2 fld_assets__asset_id Assest v13 assets_to_tbl_maintence_records
3 fld_assets__notes Assest v13 assets_to_tbl_maintence_records
4 fld_assets__maint_condition3 Assest v13 assets_to_tbl_maintence_records
S

During the creation of each data bound field on a card, FmPro Migrator verifies thatit can
determine the base table required to read the data in the SQL database. If that test fails, the object
is documented in the TAB delimited Missing Relationships Report.xis file.

FmPro Migrator is using the contents of the Relationships.JSON file stored as an arrayin memory
in order to figure out the structure of each relationship within the new application.

If a relationship cannot be found, the findIndirectRelationships.livecode stack can be used to help
troubleshoot the situation. Some FileMaker relationships may require being rebuilt manually to
work with a SQL database. Manual changes made to the Relationships.JSON file need to be
added back to the application stack as a custom propertyin order to be used by the application.

LiveCode Conversion Procedure - 55

Relationships.JSON

Relationships.JSON Overview

"tb1_Assets_to_tbl_Maintenance_Records": {
nmymn. {
llJo-inType": II=II,
"LeftFieldNameSQL": "4id",
"LeftTOName": "tbl_Assets",
"LeftTableSQL": "tbl_assets",
"RightFieldNameSQL": "asset_id",
"RightTOName": "tbl_Maintenance_Records",
"RightTableSQL": "tbl_maintenance_records"
1,
"FMRelationship": "SELECT * FROM tb1l_Maintenance_Records WHERE tbl_Assets.ID =
tb1l_Maintenance_Records.Asset_ID",
"PlaceholderFieldsCSV": "4id",
"PlaceholderTablesCSV": "tbl_assets",
"SQLCode": "SELECT * FROM tbl_maintenance_records WHERE tbl_assets.id =
tbl_maintenance_records.asset_id",
"SQLCodelLC": "SELECT * FROM tbl_maintenance_records WHERE

tb1l_maintenance_records.asset_id = :1"
1,
"tbl_Maintenance_Records_to_tbl_Assets": {
nmyn. {
"JoinType": u:u’
"LeftFieldNameSQL": "asset_id",
"LeftTOName": "tbl_Maintenance_Records",

"LeftTableSQL": "tbl_maintenance_records",
"RightFieldNameSQL": "id",

"RightTOName": "tbl_Assets",
"RightTableSQL": "tbl_assets"

},

"FMRelationship": "SELECT * FROM tbl_Assets WHERE tbl_Maintenance_Records.Asset_ID =
tb1l_Assets.ID",

"PlaceholderFieldsCSV": "asset_id",

FmPro Migrator generates the Relationships.JSON file from the relationships imported from
within the original database. Since FileMaker relationships are bi-directional, two relationships
are created for each imported relationship to represent this same functionality.

The contents of the Relationships.JSON file are automatically saved into the
Relationships JSONProp custom property of the SQL_ Library substack created by FmPro Migrator.

LiveCode Conversion Procedure - 56

Importing the Relationships.JSON File

[NON) SQL_Library *

loadRelationshipsJSON

loadSQLColumnsJSON

If the Relationships.JSON file is manually edited, it should be re-imported back into the
SQ_Librarybyclicking the loadRelationshipsJSON button on the 1st card of the SQL_Library
stack.

The Relationships.JSON data is converted into an array as soon as a successful connection is
made to the SQL database server.

The Relationships.JSON file can be edited with the Relationships JSON Editor utility described in
this manual.

LiveCode Conversion Procedure - 57

SQLColumnTypes.JSON

SQLColumnTypes.JSON Overview

{
"TableCount": 9,
"TotalColumnCount": 472,
"clients": {
"TableColumnCount": 342,
#a addresst: i

"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

das i clientantiol: |
"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

"a____conversion": {
"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

das L create mnhoLn. |
"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

"a____current_balances_and_aging": {
"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

"a____dev_mod_info": {
"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

s

"a____exceptions": {

"OriginalColumnType": "TEXT",
"SQLColumnType": "VARCHAR(25)"

The SQLColumTypes.JSON file is stored within the SQLColumnTypesJSONProp of the
SQL_Library substack.
When a database connection has been made, this JSON data is converted into the

LiveCode Conversion Procedure - 58

gSQLColumnTypesArray. The getBLOBColumnStatus() function in the SQL_Library uses this
array to determine whether the SQL database column contains BLOB data when reading/writing
data in the database.

This testis performed in order to avoid performing textEncode/textDecode on the data for BLOB
columns.

The testis being done on the original database field type, looking for the type = "PICT" due to the
consistency of always checking the FileMaker database type, since there are many database
types used for various destination databases.

LiveCode Conversion Procedure - 59

Library SubStacks

LiveCode Conversion Procedure - 60

Overview of Library SubStacks

Library Substacks
&
@ [T Application63H_LC9.livecode 730
—© @ Login n
@ @ Assets v16
L © @ Images n
O calendarWidget100
O ™ Data Grid Templates Fmig 0

—© [fmFunctions_Library
- © [Globals_Library

L © Images_Library
-_0 SQL_Library

-+ Stored_Calc_Library
—© [Unstored_Calc_Library
—O Validation_Library
-t Value_List_Library

The stack generated by FmPro Migrator Platinum Edition includes 8 library substacks designed to
implement the functionality of the original database application. The metadata from the source
database is used to generate the code placed within these substacks. The following pages of
this manual provide details about each library substack.

Library SubStack Initialization

The openStack handler of the converted stack contains "start using stack" commands for each of
the library substacks. These commands insure that the handlers within the subStacks can be run
from anywhere in the application.

on openStack
global gStatus AreaVisible,gMode
local tError
initializeAppPrefs
start using stack "SQL_Library"
start using stack "Stored_Calc_Library"
start using stack "Unstored_Calc_Library

LiveCode Conversion Procedure - 61

start using stack "Value_List_Library"
start using stack "Globals_Library"
start using stack "fmFunctions_Library"
start using stack "Validation_Library"

if gMode is empty then
put the resultinto tError
put "Browse" into gMode
put 1 into gStatusAreaVisible
switchtoBrowseMode
end if -- end of check for 1st launch
end openStack

LiveCode Conversion Procedure - 62

fmFunctions_Library

fmFunctions_Library Overview

Apply & ¢ p getAccountPrivilegeSetName s

[getAbortState © stack "fmFunctions_Libr...

[d getAccountExtendedPrivileges - e EEE srrErEe pEemases
[getAccountGroupName
[@ getAccountName

F getAccountPrivilegeSetName

function getAccountName
-- get the logged 1in username
global gAppPrefsArray
local tAccountName

oOoNOUT DA WN

[d getActiveFieldContents

[getActiveFieldName .

@ getActiveFieldTableName put gAppPrefsArray["Username"] into tAccountName
[d getActivelLayoutObjectName dretu;n tAccguntName

[getActiveModifierKeys o end getAccountName

[getActivePortalRow Lt . A

@ getActiveRecordNumber 11 function getAccountExtendedPrivileges
[d getActiveRepetitionNumber L -~ N/A for LiveCode apps R

[getActiveSelectionSize 13 local tGetAccountExtendedPrivileges
[getActiveSelectionStart . -

@ getApplicationArchitecture 15 return tGetAccountExtendedPrivileges
B setApplicationLanguage 16 end getAccountExtendedPrivileges

[getApplicationVersion 17 £ .

[@ getCalculationRepetitionNumber 18 unct1:nAgitAcE?unngoupName

[@ getConnectionAttributes 19 / or LTvaetoce apps

O getConnectionStatus 20 local tGetAccountGroupName

[getCurrentDate - GetA G N

[@ getCurrentExtendedPrivileges 2z return tGetAccountGroupName

[@ getCurrentHostTimestamp 23 end getAccountGroupName

[@ getCurrentMenuSetName -~ . -

B getCurrentPrivilegeSetName 25 function getAccountPrivilegeSetName

@ getCurrentTime 26 -- N/A for LiveCode apps

@ getCurrentTimestamp 27 local tGetAccountPrivilegeSetName

This library duplicates the functionality of 129 of the most commonly used FileMaker built-in
functions. Atool is provided to remap the original FileMaker functions to these LiveCode versions
within the converted FileMaker scripts. These LiveCode function handlers are named slightly
different from the original FileMaker functions. Therefore the included EM Functions to LiveCode
Mapping.livecode utility stack is used to rename the functions within the converted script and
libraryfiles. During the conversion process, the contents of the stored/unstored calc library stacks
are written to disk as textfiles (Unstored_Calc_Library.livecodescript,
Stored_Calc_Library.livecodescript). This has been done to facilitate the conversion of the
function names from FileMaker to LiveCode.

LiveCode Conversion Procedure - 63

Globals_Library

Globals_Library Overview

Apply 9 ¢ D Handler list [T}

[_gGlobalsInitialize © stack "Globals_Library"

[initializeGlobals 1 on initializeGlobals

2 -- Set the values needed in the globals for the app.

-- For this app it means: gGlobals table from FM
+] errorDialog

3

© U .
libraryStack 5 _gGlobalsInitialize

© localNotificationReceived G

o mainStackChanged 7 end initializeGlobals

© mobileStandaloneSaved 8

g mouse-DouIﬂéDm'm 9 on _gGlobalsInitialize

o mouseDoubleUp 10 -- The gGlobals array includes FM tables/fields which are used as global variables - <initialized during app startup
mouseDown 11 global gGlobalsArray

© mouseEnter 12

g ’”OUS:C.LCDVC 13 put empty into gGlobalsArray["tbl_value_list_data_items"]["id"]

o mouseMove 14 put empty into gGlobalsArray["tbl_value_list_data_items"]["text_label"]
mouseRelease 15 end _gGlobalsInitialize

© mouseStillDown 16

The gGlobals array within the _gGlobalsinitialize handler includes FMtables/fields which are
used as global variables. These globals are initialized during app startup to specific known
values and can be updated anytime by the application, just like FileMaker global fields.

In a FileMaker database, these fields could be part of an existing database table, mixed with other
non-global fields.

Within the converted stack file, these globals are located within a separate array and need
referenced separately instead of within existing table fields which might also contain data. This
change should be made manually within the converted scripts of the converted stack.

LiveCode Conversion Procedure - 64

Additional Preferences - LiveCode Conversion Window

o0 O Convert Database to LiveCode

Desktop, Mobile, Server

Migrate Databases
to LiveCode:

Step 1) Import
information about the
FileMaker Pro, or
Access or Visual
FoxPro project into
FmPro Migrator
Platinum Edition.

Application

Normal
saL

Step 2) Select the
type of LiveCode
stack file to create:
Application.

Note: FmPro Migrator
will delete & re-create
the stack file named
Application.livecode
in the output directory.

Step 3) Select either

A‘

Many FileMaker developers use 1 record tables containing only global fields during database
development. FmPro Migrator provides a way to specify a global table during the conversion
process. The fields of the selected table will be defined as a global arrayin the Globals_Library.

(1) Click the additional prefs button in the LiveCode Conversion window in FmPro Migrator.

LiveCode Conversion Procedure - 65

Specifying Global Fields in FmPro Migrator

®® ® Convert Database to LiveCode

v tbl_value_list_data_items .

tbl_Value_List_Data_ltems @

Read Only .
~ Use Popup Menus .

Select anytable in the solution - it gets added to the list of global tables as itis selected. Click to
highlight any item and click the delete button (3) if you added a table by mistake.

LiveCode Conversion Procedure - 66

Images_Library

Images_Library Overview

- Images_Library

|—O'i Images n
© 0460 O ¢ ° w—r

The Images_Library substack provides a convenient place where commonlyused images can be
centrally stored within the new application stack. This stack contains one card named Images1,
which can be expanded to additional cards to support more images. Buttons on other cards of the
stack can reference the ID# of images stored in this library. Replacing an image in this substack
with another image having the same ID# will effectively replace it everywhere within the
application without requiring manual updates on those other cards as long as the size is the
same.

LiveCode Conversion Procedure - 67

SQL_Library

SQL_Library Overview

Apply & ¢ p openDatabaseConnection T}
[closeDatabaseConnection © stack "sQL_Library" stack "Application63H_L...
@ convertJSONFileToArray “ b b c X
[convertRelationshipsJSONToArray 3 on 01p-eg ita ase oznect‘lon
[convertSQLColumnTypesJSONToArray 4 global ghppPrefsArray
O createNewRecordsQL 5 local tDBType,tDBUsername,tDBPassword,tDBName, tDBPort,tDBODBCDSNName
6 local tDatabaseFile,tEnvironment,tDBHost,tSQLCommands,tDBConnectionID,tError
[d deleteRecordsSQL . . .
[getBLOBColumnStatus 7 local tDBConnectionJSONArray,tDBConnectionJSONFilenameAndPath,tUserDocumentsFolder,tUserPreferencesFolder
O getCurrentRecordID 8 local tAppPreferencesFolder,tPreferencesFolderPath
@ getCurrentRelationshipInfo 9 . . .
[getFieldBasedvaluelist 10 put "MyApplicationName" into tAppPreferencesFolder
[getFindConditionsSQL 11 itch
[getFoundsetSQL 12 switc X .
O getlastInsertedPKvalue 13 case the environment is "development"
O getLeftTableColumnData 14 -- use local JSON connecion file inside stack folder if available
O getRelatedRecords 15 put GetPathToFile("DBConnection.JSON") 1into tDBConnectionJSONFilenameAndPath
[getRelatedRecordsUsingRelationsh 16 if there is a file tDBConnectionJSONFilenameAndPath then put convertJSONFileToArray (tDBConnectiondS(
17 break
[getRelatedTableCurrentRecordID
[getTableDataCR 18 default) . L.
O getTablePKs 19 -- standalone apps look for JSON connection file inside of prefs folder
. . 20 switch
[loadRelationshipsJSON .)
o loadSQLColumnTyzesJSON 21 case the platform is "wWin32"
@ logError 22 -- Windows
< " "y — -
e e e y it oaersocumentorolder b+ & tApphreferancesFolder inte threferencesrolderpath
@ updateRecordSQL b K PP
25 rea
26 case the platform is "Linux"
+] errorDialog 27 - L1nux‘ .
© tlibraryStack 28 put specialFolderPath("home") & "/Documents" 1into tUserDocumentsFolder -- ~/Documents
O ;e : i 29 put tUserDocumentsFolder & "/" & tAppPreferencesFolder into tPreferencesFolderPath
ocalNotificationReceived

The SQL_Library provides database independent code to connectto SQL database servers,
insert, query, update, delete records, and load relationships from a JSON file.

The openDatabaseConnection handler shown here is checking for the existence of the
DBConnection.JSON file containing database connection parameters. If found, the contents of
this file are stored in the tDBConnectiondSONArray. When a user logs in, the contents of this array
are overridden by any connection info manually entered by the user. This process provides the
LiveCode developer with complete control over how much info the user needs to enter when
connecting to the database server.

LiveCode Conversion Procedure -

68

Unstored_Calc_Library

Unstored_Calc_Library Overview

Apply & €& P getUnStoredCalcs B

[@ _clients_getUnStoredCalcs ©Ostack "Unstored_Calc_Lib... stack "SQL_Library" stack "Application63H_L...
@ _tbl_assets_getUnStoredCalcs

F getUnStoredCalcs

1 function getUnStoredCalcs pTableName pDataCRArray

Top level code which calls the proper function based upon the table name

-- Parameters:

-- pTableName - table to perform field calculations

-- pDataCRArray - array of column names as keys with data passed into this function
-- Array Data Format:

—-- pDataCRArray['"pTableName"][1]["CreateDate"]= 2019-04-29

N
I
1

B
. 4
errorDialog 5
libraryStack 6
localNotificationReceived 7
mainStackChanged 8

+]
@
(=]
g A -- Returns:
mobileStandaloneSaved 9 -- pDataCRArray - array of values and column names where calculations have been completed
© mouseDoubleDown 10
g mouseDoubleUp 11 switch pTableName
o mouseDown 12 case "clients"
mouseEnter 13 put _clients_getUnStoredCalcs(pTableName,pDataCRArray) into pDataCRArray
© mouseleave
o 14 break
P mouseMove 15 case "tbl_assets"
mouseRel‘ease | 16 put _tbl_assets_getUnStoredCalcs(pTableName,pDataCRArray) into pDataCRArray
© mouseStillbown
o 17 break
mouch;_)) 18 end switch
© mouseWithin 19
g namechahggd)) 20 -- return the array after updating
o pushNotw.ﬁ_catw'onRece.wed 21 return pDataCRArray for value
pushNotw.ﬁ‘catTonRogjstorcc_J 22 end getUnStoredCalcs
@ pushNotificationRegistrationErrc 23
g reachabilityChanged 24 function _clients_getUnStoredCalcs pTableName pDataCRArray
o relaunch 25 -- clients table - UnStored calculations
o releaseStack 26 —-- Parameters:
o reloadStack 27 -- pTableName - table to perform field calculations

savinsMohileStandalone

Stored field calculations are defined in this library for each table of the database from the original
FileMaker database definition. Code which is too complex for automatic conversion is
commented to prevent errors. This code runs as records are read from the database by the
refreshFields handler on each card. By default, itis commented to improve performance, because
these calcs do not necessarily need to run for every converted layout. The developer needs to
decide whether it should run, then enable this code as needed.

This script for this libraryis written to disk as Unstored_Calc_Library.livecodescriptin order to
facilitate using the EM Functions to LiveCode Mapping.livecode utility to replace the FileMaker
functions with the re-written LiveCode versions of these functions in the fmFunctions_Library.

LiveCode Conversion Procedure - 69

Stored_Calc_Library

Stored_Calc_Library Overview

F getCurrentDateTime

[getStoredCalcs

0000000000000 00000

errorDialog

libraryStack
localNotificationReceived
mainStackChanged
mobileStandaloneSaved
mouseDoubleDown
mouseDoubleUp

mouseDown

mouseEnter

mouseleave

mouseMove

mouseRelease
mouseStillDown

mouseUp

mouseWithin

nameChanged
pushNotificationReceived
pushNotificationRegistered
pushNotificationRegistrationErrc

Apply & €& P getCurrentDateTime E

_Clients_getStoredCalcs
_Members_getStoredCalcs
_tb1l_Assets_getStoredCalcs
_tb1l_Maintenance_Records_getStor

©stack "Stored_Calc_Libra... stack "Application63H_L...
1 -- Stored Calculations are calculated here - during INSERT and UPDATE database access.
2 function getCurrentDateTime
3 -- Get the current date/time info in multiple formats,
4 -- and return the result as an array for convenient usage.
5 -- Parameters:
6 -- None
7 -- Returns:
8 -- tCurrentDateTimeArray
9 -- Array Data Format:
10 -- tCurrentDateTimeArray["CurrentDateYYYYMMDD"] = date in YYYYMMDD format
11 -- tCurrentDateTimeArray["CurrentTimestamp"] = Timestamp in YYYY-MM-DD HH:MM:SS format - 24
12
13 local tCurrentDateTimeArray,tSeconds,tDateItems,tCurrentTimestamp,tCurrentDateYYYYMMDD
14 put the seconds into tSeconds
15 convert tSeconds from seconds to dateItems
16 put tSeconds into tDateItems
17 set the itemDel to comma
18 put item 1 of tDateItems & "-" & item 2 of tDateItems & "-" & item 3 of tDateItems & space
19 put item 1 of tDateItems & "-" & item 2 of tDateItems & "-" & item 3 of tDateItems 1into tCu
20
21 return tCurrentDateTimeArray
22 end getCurrentDateTime
23
24 function getStoredCalcs pTableName pDataCRArray pInsertOrUpdateType
25 -- Top level code which calls the proper function based upon the table name
26 —-— Parameters:

The Stored_Calc_Library performs calculations for stored field calculations for each table of the
database from the original FileMaker database definition. Code which is too complex for
automatic conversion is commented to prevent errors. This code runs during record update/insert
database tasks.

This script for this library is written to disk as Stored_Calc_Library.livecodescriptin order to
facilitate using the EM Functions to LiveCode Mapping.livecode utility to replace the FileMaker
functions with the re-written LiveCode versions of these functions in the fmFunctions_Library.

LiveCode Conversion Procedure - 70

Validation_Library

Validation_Library Overview

Apply O €& P Handler list
@ _Clients_getValidationErrors © stack "Validation_Library"

[¥] _placeholder_table_.get\A/a'L'idat'ion 1 -- Table Validations are calculated here - during database INSERT or UPDATE tasks.
@ _tbl Assets_getValidationErrors 2 function getValidationErrors pTableName pDataCRArray

a _tb'L_MEll‘inteinance_Records_getVal‘i 3 - Top level code which calls the proper function based upon the table name
[@ getvalidationErrors

4 -- Parameters:
5 -- pTableName - table to perform field calculations
X 6 -- pDataCRArray - array of column names as keys with modified data passed into this function
© erroeralog 7 -- Note: This array is only used for INSERT/UPDATE for one table and only contains the affected columns,
© lwbrarySFa?k . 8 -- including Auto-Enter columns, does not contain the tablename or all columns for the table.
(+] loc.alNot'lf1cat1onRece1ved 9 -- Array Data Format:
© mainstackchanged 10 -- pDataCRArray["CreateDate"]= 2019-04-29
© mobileStandaloneSaved 11 —— Returns:
© mouseDoubleDown 12 -- tErrorMessageText - Contains the error message text from the original field definition - only if there was an error.
© mouseDoubleup 13 -- Notel: Multiple errors can be returned in one message - separated by returns.
© mouseDown 14 -- Error Text Format:
© mouseEnter 15 -- tbl_assets.validation_test_Value_Range: The field validation test_Value_Range must be within the range 1 - 10
© mouseLeave 16 -- Note2: Fields which fail validation, but don't have a defined message text will get a generic message.
© mouseMove 17 -- Note3: tErrorMessageText will return empty if no fields have validation errors.
© mouseRelease 18
© mousestillDown 19 local tErrorMessageText
+] mouseUp 20
© mouselithin 21 switch pTableName
+] nameChanged % case "clients"
© pushNotificationReceived 23 put _clients_getValidationErrors(pTableName,pDataCRArray) into tErrorMessageText
© pushNotificationRegistered 24 break
L+ pushNoh:ficatﬁonRegﬁstratﬁonErr(25 case "placeholder_table"
© reachabilityChanged 26 put _placeholder_table_getValidationErrors(pTableName,pDataCRArray) into tErrorMessageText
© relaunch 27 break
releaseStack s -

The Validation_Library performs field validation handlers during database insert/update tasks for
each database table of the converted database.

LiveCode Conversion Procedure - 71

Value_List_Library

Value_List_Library Overview

Apply S ¢ p _category_list_getValueList
@ _category_list2_getValueList © stack "Value_List_Library"
— _category_hst_getValue1st 1 function _category_list_getValuelList pValuelListName
O _checlfb?x_l_(:)_getValueLws’F 2 -- Category List - Value List
a _condwt1c3n_l1st_getVal.ueUst 3 —— Parameters:
O _forms_bst_getValuel;st 4 -- pValueListName - FM version of Value List name
F| _1t('em_l1st_getValuest_t . 5 —— Returns:
a _ma1'nt_status_value_lTst__numerw. 6 -- tValuelListData - return separated list of value list qitems
[_maint_status_value_list__numeri 7
[F| _ma'!nt_status_value_l'!st__text_z 8 local tValuelistData
[_maint_status_value_list__text__ 9
(F] _one_ﬁ'eld_vl___numer'lc_getValL'Je 10 put "Office Furniture" & return after tValuelListData
(F] _one_f1eld_vl___text_getVal_ueL'ls 11 put "Computers" & return after tValueListData
[_query_.operators_getVa_\lueL'lst 12 put "Telephones" & return after tValuelListData
) _two_f'!eld_vl___numer'lc_getValL.Je 13 put "-" & return after tValuelListData
@ _two_field_v1l___text_getValuelis 14
a getCustom?ortOrderByValueL'lstSQL 15 return tValuelListData for value
@ getvaluelistData 16 end _category_list_getValuelList
17

. 18 function _category_list2_getValuelList pValuelListName
+] errorDialog _— i - i
o . 19 Category List2 Value List
o lwbraryST:ac.k . . 20 -- Parameters:
o loc.alNot1f1cat10nRece1ved 21 -- pValueListName - FM version of Value List name
o mawr)StackChanged 22 —— Returns:

mobileStandaloneSaved 23 -- tValueListData - return separated list of value list items

@ mouseDoubleDown 24
O mouseDoubleup 25 local tValuelistData
@ mouseDown 26
O mouseEnter 27 put "Office Furniture" & return after tValuelListData
molisel eave -~ R _

Custom and field based value lists are defined within the Value_List Library. Changes made
here are reflected throughout the entire application. Value lists from Microsoft Access and Visual
FoxPro are also defined inside this library.

LiveCode Conversion Procedure - 72

Conversion Utilities

LiveCode Conversion Procedure - 73

JSON Connection File Builder.livecode Utility

Opening JSON Connection File Builder

LCUtilities > 3 FMFunctionsToLiveCodeMapping1.0fc1.livecode
& LCUtilities.zip @ JSON_Connection_Builder1.0fc1.livecode

When FmPro Migrator performs a conversion project, it creates the LCUTtilities .zip file in the project
folder where the converted stack is created. Extract the contents of this Zip file and double-click the
JSON_Connection_Builder.livecode stack to open itin the LiveCode IDE.

JSON Connection File Builder

JSON Connection File Builder 1.0

www.FmProMigrator.com

P,
(S

This utility builds a JSON file containing

JSON database connection info for automatic
logins using the stack built by FmPro
Migrator Platinum Edition.

Username:

Password:

Database Type: MySQL E
Database Name:

Database Port:

Database Hostname:

Build JSON

The JSON Connection File Builder builds a database connection JSON file named
DBConnection.JSON.
This JSON connection file has 2 main uses:

LiveCode Conversion Procedure - 74

1) During development, you can quickly log the application under developmentinto your test
server without having to manually enter connection details.

2) For production usage, you can create connection files having the database type, name, port,
hostname info pre-filled for users to log into the database server. Fields which are missing from
the DBConnection.JSON file will be filled in by the user during login.

Password Encryption - JSON Connection File Builder

function decryptPassword pPasswordEncrypted
-- decrypt a single password
local tPasswordCleartext

decrypt pPasswordEncrypted using "aes-256-cbc" with password " !
put it into tPasswordCleartext
return tPasswordCleartext

end decryptPassword

function encryptPassword pPasswordCleartext
-- encrypt a single password
local tPasswordEncrypted

encrypt pPasswordCleartext using "aes-256-cbc" with password ' "
put it into tPasswordEncrypted
return tPasswordEncrypted

end encryptPassword

The JSON Connection File Builder utility encrypts the contents of the password field before writing
the JSON file. The encryptPassword function in the stack performs this task. These two handlers
correspond to identical handlers located in the application stack.

Note: Itis recommended that you change the encryption/decryption password in both locations
before distributing your production application.

Usage Ideas: Itis likely that this JSON Connection File Builder utility will be used during
development to simplify the login process during testing. Butitis hoped that by distributing this
stack and its source code, it could give developers ideas for turning itinto a more extensive utility
for production use. For instance, a more extensive tool could be developed by LiveCode
developers to automate the on-boarding process for new customers.

LiveCode Conversion Procedure - 75

Password Encryption/Decryption - Application Stack

Apply 9 & P @ openPopover

~
v

B browserBack Qstack “Appllcatlon63H L o stack "JSON_Connection... (0 button "Bulld _JSON._ btn"
[G] browserEnsure o T T Tt T T T T
[browserFinalize ;g: - pLayoutOhJectsGrouupHe1ght - formatted he1ght of group conta1n1ng all printable card objects
@) browserForward 707 -- re-set the size of the group containing the card objects to 1its original user-defined size
g E:zxz::i:it 708 set the width of group "Layout_Objects_Group" to pLayoutObjectsGrouupWidth
[browserRefresh 709 set the height of group "Layout_objects._Group“ to plLayoutObjectsGrouupHeight
[browserStop 710 set the hScrollbar of group "Layout_Obqects_Group" to true
@ buildPrep 711 set.the vScrollbar of group "Layout_Objects_Group" to true
[clearFields ;g end printRestore
o closePopoKer 714 on openPopover pPopoverName
g ;lii;iz:ssword o 715 -- open the popover at the position specified by the showLoc rect object
@ displayCalendar 716 local tShowLocControlName,tShowLoc
@ encryptPassword @ 717 put pPopoverName & "_showLoc" into tShowLocControlName
718 put the location of control tShowLocControlName into tShowLoc
g i:;i;:s;i:i;y 719 set the location of group pPopoverName to tShowlLoc
O GetPathToFile 720 show group pPopoverName
[gotoFirstRecord 721 end openPopover
() gotoLastRecord 7
723 on closePopover pPopoverName
Q gotoNextl-.?ecor‘d 724 -- hide the popover and move it back to the position specified by the hideLoc rect object
[gotoPreviousRecord 725 local tHideLocControlName,tHidelLoc
Q g(?toRecordID 726 put pPopoverName & "_hidelLoc" into tHideLocControlName
g ?;?i'si:?.:i:;zf’refs 727 ;.)ut the location of control tH‘ideLocControlName' into tHideloc
728 if the environment is not "development" then hide group pPopoverName
O openstack 729 set the location of group pPopoverName to tHidelLoc
730 end closePopover

B printRestore

B printSetup
M recizeStack

731

The encryptPassword/decryptPassword handlers are located at the top-level of the
Application.livecode stack as shown in the screenshot above.

LiveCode Conversion Procedure - 76

DBConnection.JSON File Creation

on mouseUp
-— build a JSON file using the fields on this card.
-— Output: DBConnection.JSON located 1in the same directory as this stack

local tDBConnectionJSONFilenameAndPath,tDBConnectionJSONArray,tDBConnectionJSONData
local tDBType,tDBUsername,tDBPassword,tDBName,tDBHost,tDBPort,tJSONFilename

put "DBConnection.JSON" 1into tJSONFilename

-—- gather 1info from fields

put field "Username_fld" of card "configuration" into tDBUsername

put field "Password_fld" of card "configuration" into tDBPassword

put the label of button "DBType_menu" of card "configuration" into tDBType
put field "Database_Name_fld" of card "configuration" into tDBName

put field "Database_Port_fld" of card "configuration" -into tDBPort

put field "Database_Hostname_f1ld" of card "configuration" into tDBHost

-- assemble 1info into array

put tDBType into tDBConnectionJSONArray["DBType"]

put tDBUsername into tDBConnectionJSONArray["DBUsername"]

put encryptPassword(tDBPassword) into tDBConnectionJSONArray["DBPassword"]
put tDBName 1into tDBConnectionJSONArray["DBName"]

put tDBPort into tDBConnectionJSONArray["DBPort"]

put tDBHost into tDBConnectionJSONArray["DBHost"]

-—- convert array into JSON data
put ArrayToJSON(tDBConnectionJSONArray,,1l) into tDBConnectionJSONData

The code which creates the DBConnection.JSON file is straightforward. The contents of the fields
are gathered into variables, encrypted (if necessary) and placed into an array. The arrayis
converted into JSON text and written to disk in the location specified by the user.

LiveCode Conversion Procedure - 77

FM Functions to LiveCode Remapping.livecode Utility

Opening the FM Functions to LiveCode Remapping Utility

LCUtilities > 3 FMFunctionsToLiveCodeMapping1.0fc1.livecode
i LCUtilities.zip 3 JSON_Connection_Builder1.0fc1.livecode

When FmPro Migrator performs a conversion project, it creates the LCUTtilities .zip file in the project
folder where the converted stack is created. Extract the contents of this Zip file and double-click the
FMFunctions ToLiveCodeMapping.livecode stack to open itin the LiveCode IDE.

LiveCode Conversion Procedure - 78

FM Functions to LiveCode Remapping Utility - Overview

o o FM Functions to LiveCode Mapping
Web Viewer:

FM Functions to LiveCode Mapping
www.FmProMigrator.com (()) Clarls

This utility uses the FileMaker Functions

.))) Search Q
list copied from the FileMaker website,
and remaps functons from FileMaker to
LiveCode within converted script files. Claris FileMaker Pro 19 Help
You are here: L &« 8 -

Reference > Functions reference
FileMaker URL: 19 a https://help.claris.com/en/pro-help/content/functions-reference.html = Get Web Page

Web Result: Char °
Code Functions
Exact
Filer reference
FilterValues
GetAsCSS . .
GetAsDate FileMaker Pro functions are
e grouped by the type of data
they operate on, not by the
Functions List:
= Qty: EiiCUteSQL Add Exception type of data they return. For
uild Lis T
321 Extend example, the Position
function returns a number, but
FileMaker: LiveCode: it is grouped with Text
Exceptions List: Count countFM Delete functions because it operates
Reformat Choose chooseFM
Date DateFM Delete Al on text data.
Load Store . .
FileMak LiveCod For information on where you
ileMaker: iveCode:
ing List: can use functions, see About
RS (e Qty: chooseFM Choose !
Remap Y- countFM Count formulas.
129 DateFM Date
Export JSON File ExtendFM Extend .
| ¢ JSON Fil getAccountExtendedPrivileges | Get(AccountExtendedPrivilege Note A.” functlons.are
mpor e . : . compatible on all FileMaker
clients; any exceptions are
Converted Scripts Path: lanagement14_PHP02_Project/Unstored_Calc_Library.livecodescript Browse noted in individual topics
Analysis Type: FM Functions Usage Report: Split Files
Detailed E ;iﬁﬁlet
as q
Analyze Scripts 582 Mod Text functions
370 Log
Save Report 257 List Char
Remap & Save script "Unstored_Calc_Library" Code
function getUnStoredCalcs pTableName pDataCRArray
-- Top level code which calls the proper function based upon [

the table name

The FMFunctions ToLiveCodeMapping.livecode stack is provided to automate the conversion of
FileMaker Pro functions into equivalent LiveCode functions located within the fmFunctions_Library
substack. This utilityis provided as an unlocked stack so that the developer can make changes if
necessary.

LiveCode Conversion Procedure - 79

Getting the List of FileMaker Functions

Web Viewer:

FM Functions to LiveCode Mapping (©)

& Claris

This utility uses the FileMaker Functions

. . .) Search Q
list copied from the FileMaker website,

and remaps functons from FileMaker to

LiveCode within converted script files. Claris FileMaker Pro 19 Help

You are here: L« B

o @ Reference > Functions reference

FileMaker URL: 19 d https://help.claris.com/en/pro-help/content/functions-reference.html = Get Web Page

Web Result: Char .
e @ Functions
Exact
Fiter reference
FilterValues
gzngtse FileMaker Pro functions are

grouped by the type of data

This utility already contains a list of the latest FileMaker Pro functions stored within the stack, so
you might not need to update the list, and could skip this section.

But if you wanted to update the functions list, (1) select the FileMaker version menu which will
populate the FileMaker URL field with the proper web page. (2) Click the Get Web Page button.
The LiveCode browser widget (3) will display the contents of the specified URL. Once the page
has loaded into the browser widget, a callback message will be sent to retrieve the text from the
browser and populate the text of the functions into the (4) Web Result field.

Note: FileMaker versions 16 - 18 at this time seem to return the same list of functions. This
appears to be due to all of the functions being available on the webpage but unneeded functions
are omitted from being viewed if they don't apply to the selected FileMaker version. However this
automated process retrieves all of the text of the webpage, so all functions are seen.

Building the Functions List

Functions List:
Qty: Abs

Build List Acos
321 Asin
@ Atan

The contents of the Web Resultfield are intended to be correct, but it should be edited manually if
necessary prior to proceeding to the next step. After any manual changes have been made to the
Web Result field, click the Build List button.

LiveCode Conversion Procedure - 80

After clicking the Build List button, the functions will be copied from the Web Results field, sorted
and counted when placed into the Functions List field. This will be the official list of functions
moving forward.

Adding Exceptions to the Functions List - #1

Functions List:
o Qty: |~ ExecuteSQL @ Add Exception
Build List Exp
321 Extend
Factorial
_ _ FileMaker: LiveCode:
Exceptions List: Extend Delete
Reformat Count countFM
Choose chooseFM Delete All

Load Store

Many FileMaker functions are very close in name and functionality to their equivalent LiveCode
functions. The FileMaker Get() functions are remapped automatically because the LiveCode
function names have been designed to match the same naming format.

Changes can be made to the rest of the functions by adding exceptions to the listto name a new
LiveCode function to replace the FileMaker function.

To make this type of addition, (6) click a function in the Functions List field. (7) Click the Add
Exception button. Anew entry will be added to the Exceptions List. (8) Click column #2 of the
Exceptions Listand type the name of the new LiveCode function.

Adding Exceptions to the Functions List - #2

Functions List:
— Qty: | ExecuteSQL Add Exception
Build List Exp
321
Factorial
FileMaker: LiveCode:
Exceptions List: Extend ExtendFM Delete
Reformat Count countFM
Choose chooseFM Delete All
Load Store

For this example, Extend might be replaced with ExtendFM. Add a space after the Extend function
name, (9) then type the new LiveCode function name.

LiveCode Conversion Procedure - 81

Adding Exceptions to the Functions List - #3

Functions List:
o Qty: | ExecuteSQL Add Exception
Build List Exp
321
Factorial
FileMaker: LiveCode:
Exceptions List: Extend ExtendFM Delete
Reformat @ Count countFM
Choose chooseFM Delete All

Load Store

After typing the new LiveCode function name, (10) click the Reformat button, the new LiveCode
function name will be moved over to column #2.

Note; If there aren't any functions listed in the Exceptions List, click the Load button to populate
this field with the internally stored copy of exceptions.

Loading/Saving Exceptions to the Functions List - #4

Functions List:

o Qty: ExecuteSQL Add Exception

Build List Exp
321
Factorial
FileMaker: LiveCode:
Exceptions List: Extend ExtendFM Delete
Reformat Count countFM

chooseFM Delete All

Choose
Load @Store @

The (12) Load button is used to load the previously stored copy of the Exceptions List from the
FunctionsExceptionsList custom property of the FM Functions to LiveCode Remapping.livecode
stack.

After modifying the Exceptions List, (13) click the Store button to save the results back into the
FunctionsExceptionsList custom property.

LiveCode Conversion Procedure - 82

Deleting Exceptions to the Functions List - #5

Functions List:
Qty: ExecuteSQL Add Exception
Build List Exp
321 Extend
FileMaker: LiveCode:
Exceptions List: Count countFM Delete
Reformat Choose chooseFM
Date DateFM Delete All
Load Store @

To delete an exception, click the row of the Exceptions List, (14) then click the Delete button.
Itis also possible to click the (15) Delete All button to delete all of the exceptions.

After modifying the Exceptions List, (13) click the Store button to save the results back into the
FunctionsExceptionsList custom property.

Remapping List & Save JSON File

. FileMaker: LiveCode:
Remapping List: Qty: chooseFM Choose
Remap @ y: countFM Count
128 DateFM Date
Export JSON File m ExtendFM Extend

Import JSON File @ getAccountExtendedPrivileges C_;et(_AccountExtendedPriyilege

Now that the Exceptions List has been created, (16) click the Remap button. The Remapping List
field will be populated with all of the function names which can be remapped to LiveCode
functions and the qty of functions will be displayed below the Qtylabel.

Click the (17) Export JSON File button to save the contents of the Remapping Listfield as a JSON
file.

Click the (18) Import JSON File button to load previously saved Remapping List field contents into
the field.

LiveCode Conversion Procedure - 83

Splitting Converted Script Files

Converted Scripts Path: lanagement14_PHP02_Project/Unstored_Calc_Library.livecodescript Browse

Split Files

Some of the converted scripts files can become large in size. Itis easier to manage the converted
code by splitting itinto smaller more manageable pieces. To splitfiles into smaller pieces:

(19) Click the Browse button to select a converted script file. Files with .txt and .livecodescript can
be selected.

If the file is large in size (1MB or more), (20) click the Split Files button to split the file into smaller
parts having about 10,000 lines of code each. Each new file will be given a name ending with:

_Part1, _Part2 etc.

Once a file has been split, select the 1st of the pieces to continue remapping of the functions.

Analyze Scripts
Analysis Type: FM Functions Usage Report:
Detailed | @ 89 Int
ﬂ 55 Quote
Analyze Scripts @ 42 Case
31 IsEmpty

Save Report @ 26 Last

Itis helpful to know how manyinstances of a specific function exist within script files in order to
prioritize the writing of new LiveCode replacement functions.

(21) Select a type of analysis [Detailed or Existencel].

The Detailed analysis shows how manytimes a specific function was used, butit takes longer to
run.

Selecting the Existence option just determines if a specific function has been used within a script.

(22) Click the Analyze Scripts button to perform the analysis.

(23) Click the Save Report button to save the results of the Usage Report to a textfile.

LiveCode Conversion Procedure - 84

Remap & Save

Remap & Save script "Unstored_Calc_Library"
function getUnStoredCalcs pTableName pDataCRArray
-- Top level code which calls the proper function based upon
the table name

(24) Click the Remap & Save button to remap the FileMaker functions into LiveCode functions.
The resulting file will be automatically saved using the original filename plus the text
" Remapped" as the new filename.

The resulting text file is now ready for development within LiveCode. As part of the development
process, it will be a good idea to plan exactly where you want the new scripts to be stored within

the converted LiveCode application stack.

LiveCode Conversion Procedure - 85

Relationships JSON Editor

When performing an automated LiveCode conversion project, FmPro Migrator generates the
Relationships.JSON file from the relationships imported from within the original database. This
file is saved to disk and is also imported into the RelationshipsJSONProp custom property of the
SQL_Library substack created by FmPro Migrator.

The Relationship JSON Editor utility serves as a graphical tool for editing and saving the
relationships JSON data as the LiveCode app continues to be updated.

Downloading the Relationships JSON Editor

LiveCode Conversion Project Utilities

LiveCode 9 Button Bar Widget
com.dotcomsolutionsinc.widget.buttonbar 101 LC9.zi

Relationships JSON Editor
macOS - RelationshipsISONEditor1.0.2_mac0S.dmg (7.8Mb)
Windows - RelationshipsJSONEditor1.0.2_Windows 64bit.zip (7.6Mb)

SQL Column Types JSON Editor
macOS - SQLColumnTypesISONEditor1.0.0_macOS.dmg (7.8Mb)

Windows - SQLColumnTypesEditor1.0.0 Windows_64bit.zip (7.6Mb)

The Relationships JSON Editor is available on the same web page where the fully functional
FmPro Migrator was downloaded (not the Trial version). This URL is provided with your email
purchase receipt.

LiveCode Conversion Procedure - 86

Relationships JSON Editor Overview

o @ Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins @ Contains) Ends

$h = 0 &=

Relationships: Relationship Predicates:

The starting point for using the Relationships JSON Editor is the button bar near the top of the
window.

LiveCode Conversion Procedure - 87

Importing the Relationships.JSON File

o @ Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins @ Contains) Ends

Ol

Relationships: Relationship Predicates:

Click (1) the Import button to import the Relationships.JSON file.

Note: No data validation is performed when reading the JSON file. If the a random file is imported
by accident, no data will be displayed in the Relationships data grid on the left side, but rows of
empty data will be displayed.

LiveCode Conversion Procedure - 88

Import Results

o @ Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins @ Contains) Ends

)

Relationships: 2 Relationship Predicates:

Relationship Name:]E
tbl_Assets_to_tbl_Maintenance_Records

Relationship Name: lﬁl
tbl_Maintenance_Records_to_tbl_Assets

Once the Relationships.JSON file has been imported, the names of each relationship will be
shown in the Relationships data grid on the left side.
The count of relationships is displayed at the top of the grid.

LiveCode Conversion Procedure - 89

Saving the Relationships.JSON File

o ® Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins @ Contains) Ends

O

Relationships: 2 Relationship Predicates:
Relationship Name: @
tbl_Assets_to_tbl_Maintenance_Records
Relationship Name:]E

tbl_Maintenance_Records_to_tbl_Assets

Click the (2) Save button to save the relationships (including predicates) if editing has been done.
All editing occurs in memory, and the data only gets saved by clicking the save button and
entering a filename. Since the file is a text file, it can be copied to change management systems
as needed.

After the Relationships.JSON file has been updated, it should be re-imported back into the
SQ_Librarybyclicking the loadRelationshipsJSON button on the 1st card ofthe SQL_Library
stack.

LiveCode Conversion Procedure - 90

Add New Relationship

Relationships JSON Editor

www.FmProMigrator.com

Search: (' Begins @ Contains ' Ends

X X OF |
" Save Adc g Please enter the new relationship name.

Relationships: 2 o test

Relationship Name: Cancel W

tbl_Assets_to_tbl_Maintenance_Records

Relationship Name: @
tbl_Maintenance_Records_to_tbl_Assets

Click the (3) Add button to add a new relationship, (4) enter the new relationship name in the
dialog boxthen (5) click the Ok button. The new relationship with 0 predicates will be added to the
list of relationships.

LiveCode Conversion Procedure - 91

Searching Relationship Names

@ (Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins @ Contains Ends

assets

e O

Relationships: 3 Relationship Predicates:

Relationship Name:
tbl_Maintenance_Records_to_tbl_Assets

Relationship Name:
test

B B B

Relationship Name:
tbl_Assets_to_tbl_Maintenance_Records

To search thru the relationship names, enter search text (6) within the search field, (7) click the
Search button or (8) click the search type radio buttons. The search will be performed and only the
matching records will be displayed in the Relationships grid.

To perform a search, any of the following actions will start the search:

1] Type search text in the search field, then tab out of the field or click the background.

2] Click the Search button.

3] Click on any of the search type buttons Begins, Contains, Ends above the search field.

(8) The search type radio buttons perform the search as follows:

Begins: Searches the relationship names and matches the ones which begin with the search text.
Contains: Searches the relationship names and matches the ones which contain the search text.
Ends: Searches the relationship names and matches the ones which end with the search text.

During testing, even JSON files having over 1000 relationships return results in less than 1
second on modern machines.

LiveCode Conversion Procedure - 92

Search Results

o @ Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins Contains @ Ends
assets

e Ts e

Relationships: 1 of 3 Relationship Predicates:

Relationship Name:]E
tbl_Maintenance_Records_to_tbl_Assets

Searching for relationships displays a search results label showing the number of found records,
followed by the total number of relationships being searched.

LiveCode Conversion Procedure - 93

Show All - Search Results

o @ Relationships JSON Editor 1.0.2

Relationships JSON Editor

www.FmProMigrator.com

Search: Begins Contains @ Ends

assets
o O
mpor Add Searc Show Al
Relationships: 1 of 3 Relationship Predicates:
Relationship Name:]E

tbl_Maintenance_Records_to_tbl_Assets

Clicking the (9) Show All button results in the display of all relationships.

LiveCode Conversion Procedure - 94

Editing Relationship Information

Relationships JS()N

Relationships JSON Editor 1.0.2

PlaceholderFieldsCSV:

asset_id

Relationshi
Wiw.EmEroMigraiorcom S PlaceholderTablesCSV:
Details ;
tbl_maintenance_records
Search: [Begins () Contains @ Ends SQLCodeLC: FMRelationship: sQLCode:
SELECT * FROM tbl_assets SELECT * FROM tbl_Assets SELECT * FROM tbl_assets
f *) WHERE tbl_assets.id = :1 WHERE WHERE
S e + Q CJ + tbl_Maintenance_Records.Asset_| tbl_malntena_nce_records.asset_l(
Impor Save Add Searc Show A Add = thl_Assets.ID = thl_assets.id
Relationships: 3 Relationship Predicates: 1
/ JoinType: = ‘@
Relationship Name: LeftFieldNameSQL: asset_id RightFieldNameSQL: | id

tbl_Maintenance_Records_to_tbl_Assets LeftTOName: tbl_Maintenance_Records RightTOName: tbl_Assets

LeftTableSQL: tbl_maintenance_records RightTableSQL: tbl_assets

Relationship Name:
test

Relationship Name:
tbl_Assets_to_tbl_Maintenance_Records

B & B

Clicking (10) any row of the list of relationships grid will display detailed info for the relationship
(11), along with a list of predicates (12) for that relationship in the Relationship Predicates grid on

the right.

Editing Relationship Information - Relationship Details

Relationships JSON Editor 1.0.2

'ON Editor

SQLCodelLC:

SELECT * FROM tbl_assets
WHERE tbl_assets.id = :1

PlaceholderFieldsCSV:
asset_id

PlaceholderTablesCSV:

tbl_maintenance_records

FMRelationship:

SELECT * FROM tbl_Assets
WHERE

tbl_Maintenance_Records.Asset_|

= tbl_Assets.ID

SQLCode:

SELECT * FROM tbl_assets
WHERE
tbl_maintenance_records.asset_ic
= tbl_assets.id

The contents of the relationship details fields are used directly by the generated LiveCode
application to run queries on related tables, either for single row data or multiple rows of data to
fill data grids in a manner similar to the original portal on a form/layout. The info displayed in
these fields has been generated automatically by FmPro Migrator from the original database.

LiveCode Conversion Procedure - 95

Manual changes to the predicates will require equivalent changes to these fields.

These fields include:
PlaceholderFieldsCSV - ACSV list of placeholder field names values is used to query the
columns of the SQL database.

PlaceholderTablesCSV - ACSV list of placeholder table names is used when querying the related
table(s) in the SQL database.

SQLCodelLC - This is the SQL code executed by LiveCode, where placeholder fields have been
replaced with placeholders (i1, :2 etc) passed into the query hander.

FMRelationship - This is a SQL representation of the original query as it might appearin a
FileMaker database, using the original table occurrence names.

SQLCode - The FileMaker table occurrence names have been replaced with the underlying SQL
database table in the database server.

Editing Relationship Predicates

Relationships JSON Editor 1.0.2

; JSON Editor Palz::::derFieldsCSV:

PlaceholderTablesCSV:
tbl_maintenance_records

SQLCodelLC: FMRelationship: SQLCode:
SELECT * FROM tbl_assets SELECT * FROM tbl_Assets SELECT * FROM tbl_assets
WHERE tbl_assets.id = :1 WHERE WHERE
+ tbl_Maintenance_Records.Asset_| tbl_maintenance_records.asset_ic
Add = tbl_Assets.ID = tbl_assets.id
Relationship Predicates: 1

JoinType: = '@

LeftFieldNameSQL: asset_id2 RightFieldNameSQL: | id

LeftTOName: tbl_Maintenance_Records RightTOName: tbl_Assets

LeftTableSQL: tbl_maintenance_records RightTableSQL: tbl_assets

Click on anyfield (13) in the Relationship Predicates grid to editits field contents. Changes are
saved into memory automatically, but saving to disk only occurs when clicking the top-level Save
button.

LiveCode Conversion Procedure - 96

Adding a Relationship Predicate

Relationships JSON Editor 1.0.2

5 J SO N Ed it or P:::tfjizlderFieldsCSV:

PlaceholderTablesCSV:
tbl_maintenance_records

SQLCodelLC: FMRelationship: SQLCode:
SELECT * FROM tbl_assets SELECT * FROM tbl_Assets SELECT * FROM tbl_assets
WHERE tbl_assets.id = :1 WHERE WHERE
m tbl_Maintenance_Records.Asset_| tbl_maintenance_records.asset_ic
Add = tbl_Assets.ID = tbl_assets.id
Relationship ®gedicates: 2
JoinType: = @'
LeftFieldNameSQL: asset_id2 RightFieldNameSQL: | id
LeftTOName: tbl_Maintenance_Records RightTOName: tbl_Assets

LeftTableSQL: tbl_maintenance_records RightTableSQL: tbl_assets

JoinType: = @
LeftFieldNarffleSQL: RightFieldNameSQL:

LeftTOName 'New Predicate Record RightTOName:

LeftTableSQR: RightTableSQL:

Click (14) the Add button above the Relationship Predicates grid to add a new empty predicate
record. The record will be created immediately and added to the grid. Click in each of the fields to
edit the info for the relationship.

Note: After adding the predicate, you must manually make the same changes to the top-level
relationship fields above the Relationship Predicate grid.

LiveCode Conversion Procedure - 97

Deleting a Relationship Predicate

Relationships JSON Editor 1.0.2

5 JSON Editor

SQLCodelC:

SELECT * FROM tbl_assets
WHERE tbl_assets.id = :1

+

Add

PlaceholderFieldsCSV:

asset_id

PlaceholderTablesCSV:
tbl_maintenance_records

FMRelationship:

SELECT * FROM tbl_Assets
WHERE
tbl_Maintenance_Records.Asset_|
= tbl_Assets.ID

SQLCode:

SELECT * FROM tbl_assets
WHERE
tbl_maintenance_records.asset_ic
= tbl_assets.id

Relationship Predicates: 2

JoinType: = @'
LeftFieldNameSQL: = asset_id2 RightFieldNameSQL: | id

LeftTOName: tbl_Maintenance_Records RightTOName: tbl_Assets

LeftTableSQL: tbl_maintenance_records RightTableSQL: tbl_assets

JoinType: = ® @'
LeftFieldNameSQL: RightFieldNameSQL:

LeftTOName: RightTOName:

LeftTableSQL: RightTableSQL:

Click the (15) trash can icon at the right side of the record to delete an individual relationship

predicate.

LiveCode Conversion Procedure - 98

SQL Column Types JSON Editor

When performing an automated LiveCode conversion project, FmPro Migrator generates the
SQLColumnTypes.JSON file from the tables/fields imported from within the original database.
This file is saved to disk and is also imported into the SQLColumnTypes JSONProp custom
property of the SQL_Library substack created by FmPro Migrator.

When a database connection has been made, this JSON data is converted into the
gSQLColumnTypesArray. The getBLOBColumnStatus() function in the SQL_Library uses this
array to determine whether the SQL database column contains BLOB data when reading/writing
data in the database.

This testis performed in order to avoid performing textEncode/textDecode on the data for BLOB
columns.

The testis being done on the original database field type, looking for the type = "PICT" due to the
consistency of always checking the FileMaker database type, since there are many database
types used for various destination databases.

The SQL Column Types JSON Editor utility serves as a graphical tool for editing and saving the
SQL Column Types JSON data as the LiveCode app continues to be updated.

Downloading the SQL Column Types JSON Editor

LiveCode Conversion Project Utilities

LiveCode 9 Button Bar Widget
com.dotcomsolutionsinc.widget.buttonbar 101 LC9.zip

Relationships JSON Editor
macOS - RelationshipsJSONEditorl.0.2_macOS.dmg (7.8Mb)

Windows - RelationshipsJSONEditor1.0.2_Windows_ 64bit.zip (7.6Mb)

SQL Column Types JSON Editor
macOS - SQLColumnTypesISONEditor1.0.0_macOS.dmg (7.8Mb)
Windows - SQLColumnTypesEditorl.0.0_Windows_64bit.zip (7.6Mb)

The SQL Column Types JSON Editor is available on the same web page where FmPro Migrator
was downloaded (not the Trial version). This URL is provided with your email purchase receipt.

LiveCode Conversion Procedure - 99

SQL Column Types JSON Editor Overview

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

. www.FmProMigrator.com
0
Search: @ Begins Contains () Ends
SAaL Types

= = += a

Import

Tables: Columns:

The starting point for using the SQL Column Types JSON Editor is the button bar near the top of
the window.

LiveCode Conversion Procedure - 100

Importing the SQLColumnTypes.JSON File

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

{ : } www.FmProMigrator.com
Search: Begins @ Contains () Ends
SAaL Types

Or & + Qa @

Show All

Tables: Columns:

Click (1) the Import button to import the SQLColumnTypes.JSON file.

Note: No data validation is performed when reading the JSON file. If the a random file is imported
by accident, no data will be displayed in the Tables data grid on the left side, but rows of empty
data will be displayed.

LiveCode Conversion Procedure - 101

Import Results

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

. www.FmProMigrator.com
|
Search: Begins @ Contains () Ends
SAaL Types

X X 4+ Qa

Import Save Add Show All

Tables: 6 Columns:

Table Name:
members
Table Name:
tbl_assets
Table Name:
tbl_maintenance_records
Table Name:
tbl_value_list_data_items
Table Name:
companies

Table Name:

B B B 5 B 5

companies_2

Once the SQLColumnTypes.JSON file has been imported, the names of each table will be shown
in the Tables data grid on the left side.
The count of tables is displayed above the top of the grid.

LiveCode Conversion Procedure - 102

Saving the Relationships.JSON File

O SQL Column Types JSON Editor 1.0.0

() SQL Column Types JSON Editor

Search: Begins @ Contains () Ends
SQL Types

0L + 2 ¢

mport Show Al

Tables: 6 Columns:

Table Name:

members

Table Name:

tbl_assets

Table Name:

tbl_maintenance_records

Table Name:

tbl_value_list_data_items

Table Name:

companies

B B B 5 B 5

Table Name:

companies_2

Click the (2) Save button to save the tables (including column info) if editing has been done. All
editing occurs in memory, and the data only gets saved by clicking the save button and entering a
filename. Since the file is a text file, it can be copied to change management systems as needed.

After the SQLColumnTypes.JSON file has been updated, it should be re-imported back into the
SQ_Librarybyclicking the loadSQLColumnsJSON button on the 1st card of the SQL_Library stack.

LiveCode Conversion Procedure - 103

Add New Table

I SQL Column Types JSON Editor

Search: Begins @ Contains Ends
SQL Types test

2 L0+ Q &

Import

cancel Q)

Searct

Tables: 6 Columns:

Table Name:

members

Table Name:

tbl_assets

Table Name:

tbl_maintenance_records

Table Name:

tbl_value_list_data_items

Table Name:

companies

B 5 5 8 B B

Table Name:

companies_2

Click the (3) Add button to add a new table, (4) enter the new table name in the dialog boxthen (5)
click the Ok button. The new table with 0 columns will be added to the list of tables.

Note: Table names cannot be edited here, because the table name is effectively serving as a
primary key for the data. Itis possible to add and delete table names, then add columns
individually.

Alternatively, it would be possible to edit the table name within the SQLColumnTypes.JSON
before importing. The same change would need to be made within the SQL database being used
to store the data.

LiveCode Conversion Procedure - 104

Searching Table Names

O SQL Column Types JSON Editor 1.0.0

() SQL Column Types JSON Editor

Search: Begins @ Contains () Ends
SQL Types 0 i

R

mport

Show Al

Tables: 7 Columns:

Table Name:
members
Table Name:
tbl_assets
Table Name:
tbl_maintenance_records
Table Name:
tbl_value_list_data_items
Table Name:
companies
Table Name:
companies_2

Table Name:

B B B B B B B

test

To search thru the table names, enter search text (6) within the search field, (7) click the Search
button or (8) click the search type radio buttons. The search will be performed and only the
matching records will be displayed in the Tables grid.

To perform a search, any of the following actions will start the search:

1] Type search text in the search field, then tab out of the field or click the background.

2] Click the Search button.

3] Click on any of the search type buttons Begins, Contains, Ends above the search field.

(8) The search type radio buttons perform the search as follows:

Begins: Searches the table names and matches the ones which begin with the search text.
Contains: Searches the table names and matches the ones which contain the search text.
Ends: Searches the table names and matches the ones which end with the search text.

During testing, even JSON files having over 1000 items return results in less than 1 second on
modern machines.

LiveCode Conversion Procedure - 105

Search Results

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

. www.FmProMigrator.com
1
Search: o Begins Contains Ends
SAaL Types

—ee‘—"'Qf,D’

Columns:

tbl_assets

Table Name:

tbl_maintenance_records

(]
Table Name:]‘EI
]

tbl_value_list_data_items

Table Name:

test

Searching for tables displays a search results label showing the number of found records,
followed by the total number of tables being searched.

LiveCode Conversion Procedure - 106

Show All - Search Results

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

. www.FmProMigrator.com
0
Search: @ Begins Contains () Ends
SAaL Types X

L2 &£ 4+ QO

Import Save Add Search

Tables: 4 of 8 Columns:

Table Name:]‘EI

tbl_assets

Table Name: '@
tbl_maintenance_records

Table Name:]‘EI
tbl_value_list_data_items

Table Name: '@

test

Clicking the (9) Show All button results in the display of all tables.

LiveCode Conversion Procedure - 107

Editing Table Column Information

O SQL Column Types JSON Editor 1.0.0

SQL Column Types JSON Editor

{ : } www.FmProMigrator.com
Search: @ Begins Contains () Ends
SAL Types .

Import Show All Add

Tables: 4 of 8 Columns: 70
Table Name: @ mn Name: maint_status 0
—
tbl_assets glginalColumnType: TEXT
Table Name: SQLColumnType: TEXT @
tbl_maintenance_records o
Column Name: validation_test_max_chars5_and_value_range

Table Name:
OriginalColumnType: TEXT

B B B

tbl_value_list_data_items SQLColumnType: TEXT '[‘E[
Table Name:

test Column Name: sc_full_url_readwrite
OriginalColumnType: | TEXT
SQLColumnType: TEXT IE[
Column Name: validation_test_strict_numeric
OriginalColumnType: doub
SQLColumnType: DOUBLE]E[
Caolumn Name: radio btn test fld1

Clicking (10) any row of the list of tables grid will display detailed about for the columns in the
table (11), in the Columns grid on the right.

Editing Table Column Info

+

Add

Columns: 70

Column Name: maint_status

OriginalColumnType: | TEXT @
SQLColumnType: TEXT @
Column Name: validation_test_max_chars5_and_value_range

OriginalColumnType: TEXT
SQLColumnType: TEXT @

Click on anyfield (12) in the Columns grid to editits field contents. Changes are saved into
memory automatically, but saving to disk only occurs when clicking the top-level Save button.

LiveCode Conversion Procedure - 108

Note: The Column Name effectively serves as the primary key for the columns info, so the name
of a column cannot be edited. If this type of change needs to be made, add a new column with a
new name and delete the original one.

Adding a Column

Please enter the new column name.

+ Cancel m

Add

Columns: 2

Column Name: text_label

OriginalColumnType: ~ TEXT

SQLColumnType: TEXT @
Column Name: id

OriginalColumnType: ~ doub
SQLColumnType: DOUBLE @

Click (13) the Add button above the Columns grid (14) enter a name, then (15) click the Ok button
to add a new column record having default values. The record will be created immediately and
added to the grid.

LiveCode Conversion Procedure - 109

New Table Column

+

Add

Columns: 3

Column Name: test

OriginalColumnType: ~ PICT New Column
SQLColumnType: BLOB @
Column Name: text_label

OriginalColumnType: ~ TEXT

SQLColumnType: TEXT]E
Column Name: id

OriginalColumnType: ~ doub

SQLColumnType: DOUBLE @

Click in each of the fields to edit the info for the column.

Note: As shown in this screenshot, when dealing with images, the OriginalColumnType field
should contain the text "PICT", which usually translates to the "BLOB" column type for a SQL
database. The code in the SQL Libraryis onlylooking at the OriginalColumnType text of "PICT" to
determine whether a database column contains binary data.

LiveCode Conversion Procedure - 110

Deleting a Table Column

+

Add

Columns: 3

Column Name: test

OriginalColumnType: PICT

SQLColumnType: BLOB @ @
Column Name: text_label

OriginalColumnType: TEXT

SQLColumnType: TEXT @
Column Name: id

OriginalColumnType: doub

SQLColumnType: DOUBLE @

Click the (16) trash can icon at the right side of the record to delete an individual table column.

LiveCode Conversion Procedure - 111

Using the Converted
Application

LiveCode Conversion Procedure - 112

Export Records

File -> Export Records... Menu

- Edit View R

Connect
Disconnect

Export Records...

Import Records...

Page Setup...
Print...

The Export Records... menu item in the File menu exports records from the current card and
database table as TAB delimited data into a file having an .XLS extension. The file will then be
opened automatically in Excel after it has been saved.

Data will be exported from database columns for the table associated with the layout/form - not
related tables. BLOB columns aren't supported for data import/export purposes.

Excel Warning Message

Alert

The file format and extension of 'Members -
Foundset.xls' don't match. The file could be corrupted
or unsafe. Unless you trust its source, don't openit.
Do you want to open it anyway?

““

Excel warns that the file is notreally a spreadsheet file, but it knows how to open it due to the
contents consisting of .TAB delimited data. Just click the Yes button to open the file. Then the file
should be saved using the latest Excel file format (i.e. .XIsx) for instance.

LiveCode Conversion Procedure - 113

Exported UTF Characters

| NON)
First Previous Next Last
Form: Members
1A
”; /‘___.d 0 s

.com Solutions Inc.|

First Name

Last Name

flesibRIIRG

Records:

Q0 @ Q ;

Show All Add Delete Find

F @

Save Current Save Foundset Save Blank
Record as as PDF Form as PDF

Save Foundset
as XLS

Save Current
Record as XLS

Kentaro >4 0O

Ogawa /)\/||

/ 29 /29

Exported data containing UTF-8 characters requires a slightly different opening process in order
for Excel to properly recognize the file encoding. By default, Excel imports data using the native
character set of the operating system, which causes UTF-8 characters to be improperlyread.

LiveCode Conversion Procedure - 114

Importing UTF-8 Character Data

Text Import Wizard - Step 1 of 3
The Text Wizard has determined that your data is Delimited.

If this is correct, choose Next, or choose the Data Type that best describes your data.

© Delimited - Characters such as commas or tabs separate each field.
Fixed width - Fields are aligned in columns with spaces between each field.

Start import at row: D % File origin: Unicode (UTF-8) o a

UFT8 Data

Desktop/LC9_Testing/B.../Members - Foundset.xls.

Preview of selected data:

Preview of file /Users/dsimpsg

3 po"
9 |'Steve" "Williams" "789 Avenue" "" "New York" "USA" "ABC Company" "200.0" "2009-02-02" "New" "4
10 ['Kentaro #24" "Ogawa /1\)II" "2-23-5 Imachi" "Setagaya" "Tokyo" "Japan" "ABC Company" "200.0" "2009-03
'Mary" "Smith" "123 Elm St." "" "New York" "USA" "DEF Ltd." "100.0" "2009-12-12" "Continuing" "4500.0"
'Marie" "Durand" "1 rue de la Poste" "" "Paris" "France" "DEF Ltd." "200.0" "2009-04-04" "New" "4500.
'Sophie" "Tang" "126, Deepwater Bay Road" "" "Kowloon" "Hong Kong" "DEF Ltd." "100.0" "2009-11-11" "C
14 ['Juanita" "Alvarez" "147 Houston Avenue" "" "New York" "USA" "DEF Ltd." "100.0" "2011-12-12" "Continui
"William" "Johnson" "852 Marsh Road" "" "London" "UK" "DEF Ltd." "100.0" "2011-02-02" "Continuing" "4

Cancel @ Finish

Select Open from the File menu within Excel to open the file, then select (1) the UTF-8 encoding
from the File origin menu.

As soon as UTF-8 is selected from the menu, the Preview field will show that the data has been
decoded properly, so you can click the (2) Finish button.

LiveCode Conversion Procedure - 115

Import Records

File -> Import Records... Menu

I Edit View

Connect
Disconnect

Export Records...

Import Records...

Page Setup...
Print...

The Import Records... menu imports TAB delimited text files having the .TAB or .TXT file extension.
The column names are checked to make sure they they match the fields converted from the
original database. To see the format, perform a file export first, in order to verify the order of the
columns.

Primary key columns are skipped on import, since these are already configured for auto-enter
incrementing to the next higher serial number for each new record.

Data will be imported into database columns for the table associated with the layout/form - not
related tables. BLOB columns aren't supported for data import/export purposes.

LiveCode Conversion Procedure - 116

Duplicated Column Names Error

Asource database file may contain multiple copies of the same field on a layout or form. This
situation will prevent importing of records because the columns have been duplicated.
For data import purposes, itis recommended that layouts/forms should be designed with only

The file cannot be imported due to the
following (12) errors:

Column name: "item" is in column 1 but
it should be in column 44.

Column name: "category" is in column 2
but it should be in column 45.

Column name: "item" is in column 4 but
it should be in column 44.

Column name: "category" is in column 5
but it should be in column 45.

Column name: "model" is in column 6
but it should be in column 46.

Column name: "date_purchased" is in
column 11 but it should be in column
13.

Column name: "vl_test_fld1_numeric" is
in column 32 but it should be in column
47.

Column name: "vI_test_fld2_numeric" is
in column 33 but it should be in column
48.

-.]'f-

one copy of the fields needing to be imported.

LiveCode Conversion Procedure - 117

Printing

The LiveCode stack created by FmPro Migrator includes Page Setup and Printing to printer and
PDF output options.

These menu options are used to print from any of the cards of the stack which have been created
by FmPro Migrator, except the Login card (since the login card contains no data or database
fields).

Page Setup Menu

m Edit View Rec

Connect
Disconnect

Export Records...
Import Records...

Page Setup...

Print... 8P

The Page Setup.. menu displays the standard Page Setup dialog provided by the operating
system.

Page Setup Dialog - macOS

Format For: Xerox Phaser 6510 DNI E
Xerox Phaser 6510, 5.2.0

Paper Size: US Letter B
8.50 by 11.00 inches

A m
Orientation: | |] Iio
Scale:
: Cancel (IS

From within the Page Setup dialog, the name of the printer, paper size, paper orientation and print
scale can be set.
The selected page setup info is stored within the application preferences JSON file and is used

during printing.

LiveCode Conversion Procedure - 118

Note: Cards in the converted stack which are too large to fiton a singe page should be scaled
using the Scale percentage field of the Page Setup dialog. The page scale factor is utilized for
printer output and also for PDF output. The page setup settings are read and used to set the
scaling during PDF output to match the printer output.

Page Setup - Windows

Page Setup X

Paper

Size: Letter N

Orientation Maragins (inches)

(® Portrait Left: Right: |1
(O Landscape Top: Bottom: |1

From within the Page Setup dialog, the name of the printer, paper size, paper orientation and print
scale can be set.
The selected page setup info is stored within the application preferences JSON file and is used

during printing.

Note: Cards in the converted stack which are too large to fit on a singe page cannot be scaled on
Windows. On Windows, itis best to either select a larger paper size or reduce the amount of info
on the card so that it will fit.

Idea: Inside the stack level printMenuPrintPages handler the printScale factor could be updated
programmatically to specify a print scale factor. This could be set via the Print dialog by adding a
new field for Print Scale and passing this value thru to the printMenuPrintPages handler via the
gAppPrefsArray.

LiveCode Conversion Procedure - 119

Print Dialog

@® Print
Printer: Xerox Phaser 6510 DNI ﬁ
Copies: 1
Print: © Current record

Records being browsed
Blank record

Output: PDF a
Cancel (LIS

The modal PrintDialog substack is used to print cards of the converted stack file. This dialog is
the same on macOS and Windows.

When clicking the Print button, the results are stored within the gAppPrefs Array and read from this
global array by the printMenuPrintPages handler.

Supported features include:

Printing the current record.

Printing the records being browsed (including support for found-sets).
Printing a blank record.

Each of these output options can be printed to a PDF file or directly to the selected printer.

LiveCode Conversion Procedure - 120

	LiveCode Conversion Procedure
	Table of Contents
	Licensing FmPro Migrator
	Demo Edition Dialog
	Demo Mode - About Tab
	About/License Window
	Pasting License Key

	LiveCode Conversion Procedure
	Original FileMaker Pro Layout
	Converted LiveCode Card
	Converted FileMaker Script Code

	Importing FileMaker Database Info
	FileMaker Pro 11 Notes
	FileMaker Pro 12+ Notes
	Pre-Migration Tasks - LiveCode Conversion
	A Note About Other Databases
	Importing FileMaker Pro Database Info into FmPro Migrator

	Importing Microsoft Access Database Info
	Importing Visual FoxPro Applications
	Adding the Button Bar Widget
	Button Bar Widget - Unknown Module Error
	Button Bar Widget - Uninstalled Widget Outline Displayed in Browse Status Area Group
	Download Button Bar Widget - LiveCode Store Web Site
	Download Button Bar Widget - FmPro Migrator Web Site
	Extension Builder Window
	Button Bar Widget - Displayed in Browse Status Area Group
	Button Bar Widget - Displayed in Find Status Area Group

	Converting to a LiveCode Stack
	Step 3 - Convert Database to LiveCode
	LiveCode Conversion Window
	Post Conversion Development
	Supported FileMaker Pro Layout Object Types
	Unsupported FileMaker Pro Layout Object Types
	Cosmetic Changes Required - Example #1
	Cosmetic Changes Applied - Example #1
	Original FileMaker Pro Layout
	Cosmetic Changes Required - Example #2
	Cosmetic Changes Applied - Example #2

	Customizing the LiveCode Stack Conversion Process
	Fmig_Preferences.xml File
	The Template Stack

	FmPro Custom Property Set
	FmPro - customPropertySet Overview
	Version - customProperty
	baseTable - customProperty
	fieldList - customProperty
	Entry Options Details - (fieldObj flags values)

	FileMaker Converted Script Steps
	List of Converted Script Steps

	Post Conversion Development
	Overview of Post Conversion Development - LiveCode Conversion
	Overview
	JSON Connection File Builder
	Process Flowchart

	Conversion Process Output Files
	Overview of Conversion Files
	Overview

	Application.livecode
	Application.livecode Overview

	Corrupted Images Report.txt
	Corrupted Images Report

	Duplicate Objects Report.xls
	Duplicate Objects Report Overview

	Missing Tables Report.xls
	Missing Tables Report Overview

	create_relationships.sql
	create_relationshps.sql Overview

	Missing Relationships Report.xls
	Missing Relationships Report Overview

	Relationships.JSON
	Relationships.JSON Overview
	Importing the Relationships.JSON File

	SQLColumnTypes.JSON
	SQLColumnTypes.JSON Overview

	Library SubStacks
	Overview of Library SubStacks
	Library Substacks
	Library SubStack Initialization

	fmFunctions_Library
	fmFunctions_Library Overview

	Globals_Library
	Globals_Library Overview
	Additional Preferences - LiveCode Conversion Window
	Specifying Global Fields in FmPro Migrator

	Images_Library
	Images_Library Overview

	SQL_Library
	SQL_Library Overview

	Unstored_Calc_Library
	Unstored_Calc_Library Overview

	Stored_Calc_Library
	Stored_Calc_Library Overview

	Validation_Library
	Validation_Library Overview

	Value_List_Library
	Value_List_Library Overview

	Conversion Utilities
	JSON Connection File Builder.livecode Utility
	Opening JSON Connection File Builder
	JSON Connection File Builder
	Password Encryption - JSON Connection File Builder
	Password Encryption/Decryption - Application Stack
	DBConnection.JSON File Creation

	FM Functions to LiveCode Remapping.livecode Utility
	Opening the FM Functions to LiveCode Remapping Utility
	FM Functions to LiveCode Remapping Utility - Overview
	Getting the List of FileMaker Functions
	Building the Functions List
	Adding Exceptions to the Functions List - #1
	Adding Exceptions to the Functions List - #2
	Adding Exceptions to the Functions List - #3
	Loading/Saving Exceptions to the Functions List - #4
	Deleting Exceptions to the Functions List - #5
	Remapping List & Save JSON File
	Splitting Converted Script Files
	Analyze Scripts
	Remap & Save

	Relationships JSON Editor
	Downloading the Relationships JSON Editor
	Relationships JSON Editor Overview
	Importing the Relationships.JSON File
	Import Results
	Saving the Relationships.JSON File
	Add New Relationship
	Searching Relationship Names
	Search Results
	Show All - Search Results
	Editing Relationship Information
	Editing Relationship Information - Relationship Details
	Editing Relationship Predicates
	Adding a Relationship Predicate
	Deleting a Relationship Predicate

	SQL Column Types JSON Editor
	Downloading the SQL Column Types JSON Editor
	SQL Column Types JSON Editor Overview
	Importing the SQLColumnTypes.JSON File
	Import Results
	Saving the Relationships.JSON File
	Add New Table
	Searching Table Names
	Search Results
	Show All - Search Results
	Editing Table Column Information
	Editing Table Column Info
	Adding a Column
	New Table Column
	Deleting a Table Column

	Using the Converted Application
	Export Records
	File -> Export Records... Menu
	Excel Warning Message
	Exported UTF Characters
	Importing UTF-8 Character Data

	Import Records
	File -> Import Records... Menu
	Duplicated Column Names Error

	Printing
	Page Setup Menu
	Page Setup Dialog - macOS
	Page Setup - Windows
	Print Dialog

